Câu hỏi:

09/01/2025 13

Rút gọn biểu thức \(A = \left( {\frac{{x + 3}}{{x - 9}} + \frac{1}{{\sqrt x + 3}}} \right):\frac{{\sqrt x }}{{\sqrt x + 3}}\) (x ≥ 0, x ≠ 9).

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Với x ≥ 0, x ≠ 9, ta có:

\(A = \left( {\frac{{x + 3}}{{x - 9}} + \frac{1}{{\sqrt x + 3}}} \right):\frac{{\sqrt x }}{{\sqrt x + 3}}\)

\(A = \left[ {\frac{{\left( {x + 3} \right)}}{{\left( {\sqrt x + 3} \right)\left( {\sqrt x - 3} \right)}} + \frac{{\sqrt x - 3}}{{\left( {\sqrt x + 3} \right)\left( {\sqrt x - 3} \right)}}} \right].\frac{{\sqrt x + 3}}{{\sqrt x }}\)

\(A = \frac{{x + \sqrt x }}{{\left( {\sqrt x + 3} \right)\left( {\sqrt x - 3} \right)}}.\frac{{\sqrt x + 3}}{{\sqrt x }}\)

\(A = \frac{{\sqrt x + 1}}{{\sqrt x - 3}}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho biểu thức \(A = \frac{{x - 2\sqrt x + 2}}{{\sqrt x }}\) và \(B = \frac{{2x + \sqrt x - 4}}{{x + 2\sqrt x }} - \frac{{\sqrt x + 1}}{{\sqrt x + 2}}\) với x > 0. Rút gọn biểu thức \(P = \frac{A}{B}\).

Xem đáp án » 09/01/2025 98

Câu 2:

Rút gọn biểu thức \(A = \left( {\frac{{2\sqrt x }}{{\sqrt x + 3}} + \frac{{\sqrt x }}{{\sqrt x - 3}} + \frac{{3x + 3}}{{9 - x}}} \right):\left( {\frac{{2\sqrt x - 2}}{{\sqrt x - 3}} - 1} \right)\)

(x > 0, x ≠ 9).

Xem đáp án » 09/01/2025 66

Câu 3:

Rút gọn biểu thức \(A = \left( {\frac{{\sqrt a - 1}}{{\sqrt a + 1}} + \frac{{\sqrt a + 1}}{{\sqrt a - 1}}} \right).\left( {1 - \frac{2}{{a + 1}}} \right)\) (a ≥ 0, a ≠ 1).

Xem đáp án » 09/01/2025 62

Câu 4:

Rút gọn biểu thức \(A = \left( {\frac{1}{{\sqrt x - 2}} + \frac{1}{{\sqrt x + 2}}} \right).\frac{{x - 4}}{{\sqrt x }}\) (x > 0, x ≠ 4).

Xem đáp án » 09/01/2025 56

Câu 5:

Rút gọn biểu thức \(A = \frac{{\sqrt x }}{{2\sqrt x - 3}} + \frac{{\sqrt x - 2}}{{2\sqrt x + 3}} + \frac{{15 - 4\sqrt x }}{{9 - 4x}}\) (x ≥ 0, x ≠ \(\frac{9}{4}\)).

Xem đáp án » 09/01/2025 52

Câu 6:

Rút gọn biểu thức \(B = \frac{{2\sqrt x + 3}}{{\sqrt x - 3}} + \frac{{\sqrt x + 3}}{{4 - \sqrt x }} - \frac{{x - 6\sqrt x }}{{x - 7\sqrt x + 12}}\) với x ≥ 0, x ≠ 9, x ≠ 16.

Xem đáp án » 09/01/2025 51

Câu 7:

Rút gọn biểu thức \(P = \left( {1 + \frac{{\sqrt x }}{{x + \sqrt x + 1}}} \right):\frac{{\sqrt x + 1}}{{x\sqrt x - 1}}\) (x ≥ 0, x ≠ 1).

Xem đáp án » 09/01/2025 50

Bình luận


Bình luận