12 bài tập Rút gọn biểu thức có chứa căn thức bậc hai có lời giải

142 người thi tuần này 4.6 344 lượt thi 12 câu hỏi 45 phút

Nội dung liên quan:

Danh sách câu hỏi:

Lời giải

Hướng dẫn giải

Với x > 0, x ≠ 4, ta có:

\(A = \left( {\frac{1}{{\sqrt x - 2}} + \frac{1}{{\sqrt x + 2}}} \right).\frac{{x - 4}}{{\sqrt x }}\)

\(A = \left[ {\frac{{\sqrt x + 2}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 2} \right)}} + \frac{{\sqrt x - 2}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 2} \right)}}} \right].\frac{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 2} \right)}}{{\sqrt x }}\)

\(A = \frac{{\left( {\sqrt x + 2 + \sqrt x - 2} \right)}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 2} \right)}}.\frac{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 2} \right)}}{{\sqrt x }}\)

\(A = \frac{{2\sqrt x }}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 2} \right)}}.\frac{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 2} \right)}}{{\sqrt x }} = 2\).

Vậy với x > 0, x ≠ 4 thì A = 2.

Lời giải

Hướng dẫn giải

Với a ≥ 0, a ≠ 1, ta có:

\(A = \left( {\frac{{\sqrt a - 1}}{{\sqrt a + 1}} + \frac{{\sqrt a + 1}}{{\sqrt a - 1}}} \right).\left( {1 - \frac{2}{{a + 1}}} \right)\)

\(A = \left[ {\frac{{{{\left( {\sqrt a - 1} \right)}^2}}}{{\left( {\sqrt a + 1} \right)\left( {\sqrt a - 1} \right)}} + \frac{{{{\left( {\sqrt a + 1} \right)}^2}}}{{\left( {\sqrt a + 1} \right)\left( {\sqrt a - 1} \right)}}} \right].\frac{{a - 1}}{{a + 1}}\)

\(A = \frac{{\left( {a - 2\sqrt a + 1 + a + 2\sqrt a + 1} \right)}}{{\left( {\sqrt a + 1} \right)\left( {\sqrt a - 1} \right)}}.\frac{{\left( {a - 1} \right)}}{{\left( {a + 1} \right)}}\)

\(A = \frac{{2\left( {a + 1} \right)}}{{\left( {\sqrt a + 1} \right)\left( {\sqrt a - 1} \right)}}.\frac{{\left( {\sqrt a + 1} \right)\left( {\sqrt a - 1} \right)}}{{\left( {a + 1} \right)}} = 2\).

Vậy với a ≥ 0, a ≠ 1 thì a = 2.

Lời giải

Với a > 0, a ≠ 4, ta có:

\(A = \left( {\frac{{\sqrt a - 2}}{{\sqrt a + 2}} - \frac{{\sqrt a + 2}}{{\sqrt a - 2}}} \right).\left( {\sqrt a - \frac{2}{{\sqrt a }}} \right)\)

\(A = \left[ {\frac{{{{\left( {\sqrt a - 2} \right)}^2}}}{{\left( {\sqrt a + 2} \right)\left( {\sqrt a - 2} \right)}} - \frac{{{{\left( {\sqrt a + 2} \right)}^2}}}{{\left( {\sqrt a + 2} \right)\left( {\sqrt a - 2} \right)}}} \right].\left( {\frac{{a - 2}}{{\sqrt a }}} \right)\)

\(A = \frac{{{{\left( {\sqrt a - 2} \right)}^2} - {{\left( {\sqrt a + 2} \right)}^2}}}{{\left( {\sqrt a + 2} \right)\left( {\sqrt a - 2} \right)}}.\left( {\frac{{a - 2}}{{\sqrt a }}} \right)\)

\(A = \frac{{\left( {\sqrt a - 2 - \sqrt a - 2} \right)\left( {\sqrt a - 2 + \sqrt a + 2} \right)}}{{\left( {\sqrt a + 2} \right)\left( {\sqrt a - 2} \right)}}.\left( {\frac{{a - 2}}{{\sqrt a }}} \right)\)

\(A = \frac{{ - 4.2\sqrt a }}{{\left( {\sqrt a + 2} \right)\left( {\sqrt a - 2} \right)}}.\left( {\frac{{a - 2}}{{\sqrt a }}} \right)\)

\(A = \frac{{ - 8\left( {a - 2} \right)}}{{\left( {\sqrt a + 2} \right)\left( {\sqrt a - 2} \right)}}\).

Lời giải

Hướng dẫn giải

Với x ≥ 0, x ≠ 4, ta có:

\(A = \frac{{5\sqrt x - 3}}{{\sqrt x - 2}} + \frac{{3\sqrt x + 1}}{{\sqrt x + 2}} - \frac{{x + 2\sqrt x - 8}}{{x - 4}}\)

\(A = \frac{{\left( {5\sqrt x - 3} \right)\left( {\sqrt x + 2} \right)}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 2} \right)}} + \frac{{\left( {3\sqrt x + 1} \right)\left( {\sqrt x - 2} \right)}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 2} \right)}} - \frac{{x + 2\sqrt x - 8}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 2} \right)}}\)

\(A = \frac{{5x + 7\sqrt x - 6}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 2} \right)}} + \frac{{3x - 5\sqrt x - 2}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 2} \right)}} - \frac{{x + 2\sqrt x - 8}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 2} \right)}}\)

\(A = \frac{{5x + 7\sqrt x - 6 + 3x - 5\sqrt x - 2 - x - 2\sqrt x + 8}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 2} \right)}}\)

\(A = \frac{{7x}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 2} \right)}}\).

Lời giải

Hướng dẫn giải

Với x ≥ 0, x ≠ 16, ta có:

\(A = \frac{{5 - 5\sqrt x }}{{x - 16}} - \frac{2}{{4 - \sqrt x }} + \frac{3}{{\sqrt x + 4}}\)

\(A = \frac{{5 - 5\sqrt x }}{{\left( {\sqrt x - 4} \right)\left( {\sqrt x + 4} \right)}} + \frac{{2\left( {\sqrt x + 4} \right)}}{{\left( {\sqrt x - 4} \right)\left( {\sqrt x + 4} \right)}} + \frac{{3\left( {\sqrt x - 4} \right)}}{{\left( {\sqrt x - 4} \right)\left( {\sqrt x + 4} \right)}}\)

\(A = \frac{{5 - 5\sqrt x + 2\sqrt x + 8 + 3\sqrt x - 12}}{{\left( {\sqrt x - 4} \right)\left( {\sqrt x + 4} \right)}}\)

\(A = \frac{1}{{\left( {\sqrt x - 4} \right)\left( {\sqrt x + 4} \right)}} = \frac{1}{{x - 16}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

4.6

69 Đánh giá

50%

40%

0%

0%

0%