Câu hỏi:
26/05/2025 22Cho phương trình x2 – 2mx + m – 1 = 0 (với m là tham số). Có bao nhiêu giá trị của m để phương trình có hai nghiệm phân biệt x1, x2 thỏa mãn \(\sqrt {{x_1}} + \sqrt {{x_2}} = 2?\)
Quảng cáo
Trả lời:
Đáp án đúng là: B
Xét phương trình x2 – 2mx + m – 1 = 0 là phương trình bậc hai ẩn x có:
\(\Delta ' = {\left( { - m} \right)^2} - 1 \cdot \left( {m - 1} \right) = {m^2} - m + 1 = {\left( {m - \frac{1}{2}} \right)^2} + \frac{3}{4} > 0\) với mọi m.
Khi đó phương trình có hai nghiệm phân biệt x1, x2 với mọi m.
Theo định lí Viète ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = 2m\\{x_1}{x_2} = m - 1\end{array} \right..\)
⦁ Để tồn tại \(\sqrt {{x_1}} ,\,\,\sqrt {{x_2}} \) thì ta cần có \({x_1} \ge 0,\,\,{x_2} \ge 0\) hay \(\left\{ \begin{array}{l}{x_1} + {x_2} \ge 0\\{x_1}{x_2} \ge 0\end{array} \right.\)
Suy ra \(\left\{ \begin{array}{l}2m \ge 0\\m - 1 \ge 0\end{array} \right.\) hay \(\left\{ \begin{array}{l}m \ge 0\\m \ge 1\end{array} \right.\) nên m ≥ 1.
⦁ Với m ≥ 1, ta có:
\(\sqrt {{x_1}} + \sqrt {{x_2}} = 2\) nên \({\left( {\sqrt {{x_1}} + \sqrt {{x_2}} } \right)^2} = 4\) hay \({x_1} + {x_2} + 2\sqrt {{x_1}{x_2}} = 4\)
Suy ra:
\(2m + 2\sqrt {m - 1} = 4\)
\(2\sqrt {m - 1} = 4 - 2m\)
\(\sqrt {m - 1} = 2 - m\,\,\,\left( * \right)\)
Để giải được phương trình trên, ta bình phương hai vế, tuy nhiên cần điều kiện hai vế không âm, tức là 2 – m ≥ 0 hay m ≤ 2.
Kết hợp 2 điều kiện, ta được: 1 ≤ m ≤ 2.
Với 1 ≤ m ≤ 2, bình phương hai vế phương trình (*) ta được:
m – 1 = (2 – m)2
m – 1 = 4 – 4m + m2
m2 – 5m + 5 = 0 (**)
Phương trình (**) có ∆m = (–5)2 – 4.1.5 = 25 – 20 = 5 > 0.
Do đó phương trình (**) có hai nghiệm phân biệt là:
\[m = \frac{{5 + \sqrt 5 }}{2};\,\,m = \frac{{5 - \sqrt 5 }}{2}.\]
Kết hợp điều kiện 1 ≤ m ≤ 2, ta có \[m = \frac{{5 - \sqrt 5 }}{2}.\]
Vậy có 1 giá trị của m là \[m = \frac{{5 - \sqrt 5 }}{2}\] thỏa mãn yêu cầu đề bài.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho phương trình x2 – (2m – 1)x + m2 – 1 = 0 (với m là tham số). Có bao nhiêu giá trị nguyên dương của m để phương trình có hai nghiệm phân biệt x1, x2 sao cho (x1 – x2)2 = x1 – 3x2?
Câu 2:
Cho phương trình x2 + (2m + 1)x + 3m = 0 (với m là tham số) có hai nghiệm phân biệt, trong đó có một nghiệm là x1 = 3. Nghiệm còn lại là
Câu 3:
Cho phương trình x2 – 2(m – 2)x + 2m – 5 = 0 (với m là tham số) có hai nghiệm x1, x2 thỏa mãn x1(1 – x2) + x2(1 – x1) < 4. Giá trị của m là
>Câu 4:
Cho phương trình x2 – 2(m + 1)x + 4m = 0 (với m là tham số). Có bao nhiêu giá trị của tham số m để phương trình có hai nghiệm phân biệt x1, x2 sao cho x1 = –3x2?
Câu 5:
Biết rằng phương trình x2 – 3mx + m = 0 (m là tham số) có hai nghiệm là –2 và a. Giá trị của a là
Câu 6:
Với giá trị nào của tham số m thì phương trình x2 + 2(m – 1)x – m = 0 có hai nghiệm x1, x2 sao cho biểu thức \(A = x_1^2 + x_2^2 - {x_1}{x_2}\) có giá trị nhỏ nhất?
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
Đề thi minh họa TS vào 10 năm học 2025 - 2026_Môn Toán_Tỉnh Đắk Lắk
15 câu Trắc nghiệm Toán 9 Kết nối tri thức Bài 1. Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn có đáp án
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 01
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
123 bài tập Nón trụ cầu và hình khối có lời giải
12 bài tập Một số bài toán thực tế liên quan đến bất đẳng thức có lời giải
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận