Câu hỏi:
26/05/2025 62Cho phương trình x2 – 2mx + m – 1 = 0 (với m là tham số). Có bao nhiêu giá trị của m để phương trình có hai nghiệm phân biệt x1, x2 thỏa mãn \(\sqrt {{x_1}} + \sqrt {{x_2}} = 2?\)
Quảng cáo
Trả lời:
Đáp án đúng là: B
Xét phương trình x2 – 2mx + m – 1 = 0 là phương trình bậc hai ẩn x có:
\(\Delta ' = {\left( { - m} \right)^2} - 1 \cdot \left( {m - 1} \right) = {m^2} - m + 1 = {\left( {m - \frac{1}{2}} \right)^2} + \frac{3}{4} > 0\) với mọi m.
Khi đó phương trình có hai nghiệm phân biệt x1, x2 với mọi m.
Theo định lí Viète ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = 2m\\{x_1}{x_2} = m - 1\end{array} \right..\)
⦁ Để tồn tại \(\sqrt {{x_1}} ,\,\,\sqrt {{x_2}} \) thì ta cần có \({x_1} \ge 0,\,\,{x_2} \ge 0\) hay \(\left\{ \begin{array}{l}{x_1} + {x_2} \ge 0\\{x_1}{x_2} \ge 0\end{array} \right.\)
Suy ra \(\left\{ \begin{array}{l}2m \ge 0\\m - 1 \ge 0\end{array} \right.\) hay \(\left\{ \begin{array}{l}m \ge 0\\m \ge 1\end{array} \right.\) nên m ≥ 1.
⦁ Với m ≥ 1, ta có:
\(\sqrt {{x_1}} + \sqrt {{x_2}} = 2\) nên \({\left( {\sqrt {{x_1}} + \sqrt {{x_2}} } \right)^2} = 4\) hay \({x_1} + {x_2} + 2\sqrt {{x_1}{x_2}} = 4\)
Suy ra:
\(2m + 2\sqrt {m - 1} = 4\)
\(2\sqrt {m - 1} = 4 - 2m\)
\(\sqrt {m - 1} = 2 - m\,\,\,\left( * \right)\)
Để giải được phương trình trên, ta bình phương hai vế, tuy nhiên cần điều kiện hai vế không âm, tức là 2 – m ≥ 0 hay m ≤ 2.
Kết hợp 2 điều kiện, ta được: 1 ≤ m ≤ 2.
Với 1 ≤ m ≤ 2, bình phương hai vế phương trình (*) ta được:
m – 1 = (2 – m)2
m – 1 = 4 – 4m + m2
m2 – 5m + 5 = 0 (**)
Phương trình (**) có ∆m = (–5)2 – 4.1.5 = 25 – 20 = 5 > 0.
Do đó phương trình (**) có hai nghiệm phân biệt là:
\[m = \frac{{5 + \sqrt 5 }}{2};\,\,m = \frac{{5 - \sqrt 5 }}{2}.\]
Kết hợp điều kiện 1 ≤ m ≤ 2, ta có \[m = \frac{{5 - \sqrt 5 }}{2}.\]
Vậy có 1 giá trị của m là \[m = \frac{{5 - \sqrt 5 }}{2}\] thỏa mãn yêu cầu đề bài.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: B
Xét phương trình x2 – (2m – 1)x + m2 – 1 = 0 là phương trình bậc hai ẩn x có:
∆ = [–(2m – 1)]2 – 4.1.(m2 – 1) = 4m2 – 4m + 1 – 4m2 + 4 = 5 – 4m.
Để phương trình có hai nghiệm phân biệt x1, x2 thì ∆ > 0, tức là 5 – 4m > 0, hay \[m < \frac{5}{4}.\]
Theo định lí Viète ta có \(\left\{ \begin{array}{l}{x_1} + {x_2} = 2m - 1\,\,\,\,\,\,\,\,\,\left( 1 \right)\\{x_1}{x_2} = {m^2} - 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right)\end{array} \right..\)
Ta có (x1 – x2)2 = (x1 + x2)2 – 4x1x2
= (2m – 1)2 – 4.(m2 – 1)
= 4m2 – 4m + 1 – 4m2 + 4
= 5 – 4m.
Theo bài, (x1 – x2)2 = x1 – 3x2 nên x1 – 3x2 = 5 – 4m, suy ra x1 = 3x2 + 5 – 4m.
Thay vào (1), ta được:
3x2 + 5 – 4m + x2 = 2m – 1 hay 4x2 = 6m – 6 nên \({x_2} = \frac{{3m - 3}}{2}.\)
Từ đó ta có \[{x_1} = 3 \cdot \frac{{3m - 3}}{2} + 5 - 4m = \frac{{9m - 9}}{2} + \frac{{10 - 8m}}{2} = \frac{{m + 1}}{2}.\]
Thay \[{x_1} = \frac{{m + 1}}{2}\] và \({x_2} = \frac{{3m - 3}}{2}\) vào (2) ta được:
\(\frac{{m + 1}}{2} \cdot \frac{{3m - 3}}{2} = {m^2} - 1\)
3m2 – 3m + 3m – 3 = 4m2 – 4
m2 = 1
m = 1 hoặc m = –1 (thỏa mãn điều kiện).
Mà m là số nguyên dương, nên ta chọn m = 1.
Vậy chỉ có 1 giá trị nguyên dương của m thỏa mãn yêu cầu đề bài.
>Lời giải
Đáp án đúng là: B
Thay x1 = 3 vào phương trình x2 + (2m + 1)x + 3m = 0, ta được:
32 + (2m + 1).3 + 3m = 0
9 + 6m + 3 + 3m = 0
9m = –12
\(m = \frac{{ - 4}}{3}.\)
Theo định lí Viète, ta có: \[{x_1}{x_2} = 3m = 3 \cdot \frac{{ - 4}}{3} = - 4.\]
Hay 3.x2 = –4 nên \[{x_2} = - \frac{4}{3}.\]
Vậy ta chọn phương án B.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.