Giải các phương trình sau:
a) \[\left( {3x + 2} \right)\left( {1 - x} \right) = 0.\]
b) \(\frac{{x + 3}}{{x - 3}} = \frac{3}{{{x^2} - 3x}} + \frac{1}{x}.\)
Giải các phương trình sau:
a) \[\left( {3x + 2} \right)\left( {1 - x} \right) = 0.\]
b) \(\frac{{x + 3}}{{x - 3}} = \frac{3}{{{x^2} - 3x}} + \frac{1}{x}.\)
Quảng cáo
Trả lời:
a) \[\left( {3x + 2} \right)\left( {1 - x} \right) = 0\]
\(3x + 2 = 0\) hoặc \(1 - x = 0\)
\(3x = - 2\) hoặc \(x = 1\)
\(x = \frac{{ - 2}}{3}\) hoặc \(x = 1\)
Vậy phương trình đã cho có nghiệm là \(x = \frac{{ - 2}}{3};\,\,x = 1.\)b) Điều kiện xác định \(x \ne 0;\,\,x \ne 3.\)
\(\frac{{x + 3}}{{x - 3}} = \frac{3}{{{x^2} - 3x}} + \frac{1}{x}\)
\(\frac{{\left( {x + 3} \right)x}}{{x\left( {x - 3} \right)}} = \frac{3}{{x\left( {x - 3} \right)}} + \frac{{x - 3}}{{x\left( {x - 3} \right)}}\)
\(\left( {x + 3} \right)x = 3 + x - 3\)
\({x^2} + 3x = 3 + x - 3\)
\({x^2} + 2x = 0\)
\(x\left( {x + 2} \right) = 0\)
\(x = 0\) hoặc \(x + 2 = 0\)
\(x = 0\) (không thỏa mãn) hoặc \(x = - 2\) (thỏa mãn).
Vậy nghiệm phương trình đã cho là \(x = - 2\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đặt \(BC = x\,\,\left( {{\rm{km}}} \right)\).
![Tại hai điểm cách nhau \[1\,\,{\rm{km}}\] trên mặt đất người ta nhìn thấy đỉnh núi với góc nâng lần lượt là \[40^\circ \] và \[32^\circ \] \((A,\,\,B,\,\,C\) thẳng hàng) (như hình vẽ). (ảnh 2)](https://video.vietjack.com/upload2/quiz_source1/2025/11/blobid1-1764082300.png)
Khi đó \(AC = BC + 1 = x + 1\,\,\left( {{\rm{km}}} \right).\)
Xét \[\Delta ADC\] vuông tại \[C\] có
\[CD = BC \cdot \tan 40^\circ = x\tan 40^\circ & \left( 1 \right)\]
Xét \[\Delta BDC\] vuông tại \[C\] có
\[CD = AC \cdot \tan 32^\circ = \left( {x + 1} \right)\tan 32^\circ & \left( 2 \right)\]Từ \[\left( 1 \right)\] và \[\left( 2 \right)\] suy ra \[x\tan 40^\circ = \left( {x + 1} \right)\tan 32^\circ \]
\[x\tan 40^\circ = x\tan 32^\circ + \tan 32^\circ \]
\[x\left( {\tan 40^\circ - \tan 32^\circ } \right) = \tan 32^\circ \]
\[x = \frac{{\tan 32^\circ }}{{\tan 40^\circ - \tan 32^\circ }} \approx 2,45\,\,\left( {{\rm{km}}} \right).\]
Vậy ngọn núi cao khoảng \[2,45{\rm{ km}}.\]
Lời giải
a) \(3x - 8 < 4x - 12\)
\(3x - 4x < - 12 + 8\)
\( - x < - 4\)
\(x > 4\).
Vậy nghiệm của bất phương trình đã cho là \(x > 4.\)
b) \[\frac{{4x - 1}}{2} + \frac{{6x - 19}}{6} \ge \frac{{9x - 11}}{3}\]
\[\frac{{3\left( {4x - 1} \right)}}{6} + \frac{{6x - 19}}{6} \ge \frac{{2\left( {9x - 11} \right)}}{6}\]
\[3\left( {4x - 1} \right) + 6x - 19 \ge 2\left( {9x - 11} \right)\]
\[12x - 3 + 6x - 19 \ge 18x - 22\]
\[12x + 6x - 18x \ge - 22 + 3 + 19\]
\[0x \ge 0\].
Vậy nghiệm của bất phương trình đã cho là \(x \in \mathbb{R}.\)Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
![Tại hai điểm cách nhau \[1\,\,{\rm{km}}\] trên mặt đất người ta nhìn thấy đỉnh núi với góc nâng lần lượt là \[40^\circ \] và \[32^\circ \] \((A,\,\,B,\,\,C\) thẳng hàng) (như hình vẽ). (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/11/blobid0-1764082271.png)