Câu hỏi:

26/11/2025 100 Lưu

Giải các phương trình sau:

a) \[\left( {3x + 2} \right)\left( {1 - x} \right) = 0.\]    

b) \(\frac{{x + 3}}{{x - 3}} = \frac{3}{{{x^2} - 3x}} + \frac{1}{x}.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) \[\left( {3x + 2} \right)\left( {1 - x} \right) = 0\]

\(3x + 2 = 0\) hoặc \(1 - x = 0\)

\(3x =  - 2\) hoặc \(x = 1\)

\(x = \frac{{ - 2}}{3}\) hoặc \(x = 1\)

Vậy phương trình đã cho có nghiệm là \(x = \frac{{ - 2}}{3};\,\,x = 1.\)

b) Điều kiện xác định \(x \ne 0;\,\,x \ne 3.\)

\(\frac{{x + 3}}{{x - 3}} = \frac{3}{{{x^2} - 3x}} + \frac{1}{x}\)

\(\frac{{\left( {x + 3} \right)x}}{{x\left( {x - 3} \right)}} = \frac{3}{{x\left( {x - 3} \right)}} + \frac{{x - 3}}{{x\left( {x - 3} \right)}}\)

\(\left( {x + 3} \right)x = 3 + x - 3\)

\({x^2} + 3x = 3 + x - 3\)

\({x^2} + 2x = 0\)

\(x\left( {x + 2} \right) = 0\)

\(x = 0\) hoặc \(x + 2 = 0\)

\(x = 0\) (không thỏa mãn) hoặc \(x =  - 2\) (thỏa mãn).

Vậy nghiệm phương trình đã cho là \(x =  - 2\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đặt \(BC = x\,\,\left( {{\rm{km}}} \right)\).

Tại hai điểm cách nhau \[1\,\,{\rm{km}}\] trên mặt đất người ta nhìn thấy đỉnh núi với góc nâng lần lượt là \[40^\circ \] và \[32^\circ \] \((A,\,\,B,\,\,C\) thẳng hàng)  (như hình vẽ). (ảnh 2)

Khi đó \(AC = BC + 1 = x + 1\,\,\left( {{\rm{km}}} \right).\)

Xét \[\Delta ADC\] vuông tại \[C\] có

\[CD = BC \cdot \tan 40^\circ  = x\tan 40^\circ  & \left( 1 \right)\]

Xét \[\Delta BDC\] vuông tại \[C\] có

\[CD = AC \cdot \tan 32^\circ  = \left( {x + 1} \right)\tan 32^\circ  & \left( 2 \right)\]

Từ \[\left( 1 \right)\] và \[\left( 2 \right)\] suy ra \[x\tan 40^\circ  = \left( {x + 1} \right)\tan 32^\circ \]

\[x\tan 40^\circ  = x\tan 32^\circ  + \tan 32^\circ \]

\[x\left( {\tan 40^\circ  - \tan 32^\circ } \right) = \tan 32^\circ \]

\[x = \frac{{\tan 32^\circ }}{{\tan 40^\circ  - \tan 32^\circ }} \approx 2,45\,\,\left( {{\rm{km}}} \right).\]

Vậy ngọn núi cao khoảng \[2,45{\rm{ km}}.\]

Lời giải

a) Gọi \(x\) là số câu trả lời đúng \(\left( {0 \le x \le 12,\,\,x \in \mathbb{N}} \right)\).

Khi đó, số câu trả lời sai là \(12 - x\) (câu hỏi).

Số điểm được cộng khi trả lời đúng \(x\) câu hỏi là \(5x\) (điểm)

Số điểm bị trừ khi trả lời đúng \(12 - x\) câu hỏi là \(2\left( {12 - x} \right)\) (điểm)

Khi bắt đầu cuộc thi mỗi thí sinh có sẵn 20 điểm nên số điểm thí

Theo đề bài, những thí sinh nào đạt từ 50 điểm trở lên sẽ được vào vòng tiếp theo nên ta có

\(20 + 5x - 2\left( {12 - x} \right) \ge 50\)

Vậy bất phương trình cần tìm là: \(20 + 5x - 2\left( {12 - x} \right) \ge 50\).

b) Giải bất phương trình:

\(20 + 5x - 2\left( {12 - x} \right) \ge 50\)

\(20 + 5x - 24 + 2x \ge 50\)

\(7x - 4 \ge 50\)

\(x \ge \frac{{54}}{7} \approx 7,714.\)

Vậy thí sinh muốn vào vòng tiếp theo cần trả lời đúng 8 câu hỏi trở lên.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP