Câu hỏi:

26/11/2025 17 Lưu

Trong cuộc thi “Đố vui để học”, mỗi thí sinh phải trả lời 12 câu hỏi. Mỗi câu hỏi gồm bốn phương án, trong đó chỉ có một phương án đúng. Với mỗi câu hỏi, nếu trả lời đúng thì được cộng thêm 5 điểm, trả lời sai bị trừ 2 điểm. Khi bắt đầu cuộc thi mỗi thí sinh có sẵn 20 điểm. Thí sinh nào đạt từ 50 điểm trở lên sẽ được vào vòng tiếp theo.

a) Gọi \(x\) là số câu trả lời đúng \(\left( {0 \le x \le 12,\,\,x \in \mathbb{N}} \right)\). Viết bất phương trình phù hợp với dữ liệu đề bài.

b) Hỏi thí sinh phải trả lời đúng ít nhất bao nhiêu câu thì được vào vòng thi tiếp theo?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Gọi \(x\) là số câu trả lời đúng \(\left( {0 \le x \le 12,\,\,x \in \mathbb{N}} \right)\).

Khi đó, số câu trả lời sai là \(12 - x\) (câu hỏi).

Số điểm được cộng khi trả lời đúng \(x\) câu hỏi là \(5x\) (điểm)

Số điểm bị trừ khi trả lời đúng \(12 - x\) câu hỏi là \(2\left( {12 - x} \right)\) (điểm)

Khi bắt đầu cuộc thi mỗi thí sinh có sẵn 20 điểm nên số điểm thí

Theo đề bài, những thí sinh nào đạt từ 50 điểm trở lên sẽ được vào vòng tiếp theo nên ta có

\(20 + 5x - 2\left( {12 - x} \right) \ge 50\)

Vậy bất phương trình cần tìm là: \(20 + 5x - 2\left( {12 - x} \right) \ge 50\).

b) Giải bất phương trình:

\(20 + 5x - 2\left( {12 - x} \right) \ge 50\)

\(20 + 5x - 24 + 2x \ge 50\)

\(7x - 4 \ge 50\)

\(x \ge \frac{{54}}{7} \approx 7,714.\)

Vậy thí sinh muốn vào vòng tiếp theo cần trả lời đúng 8 câu hỏi trở lên.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đặt \(BC = x\,\,\left( {{\rm{km}}} \right)\).

Tại hai điểm cách nhau \[1\,\,{\rm{km}}\] trên mặt đất người ta nhìn thấy đỉnh núi với góc nâng lần lượt là \[40^\circ \] và \[32^\circ \] \((A,\,\,B,\,\,C\) thẳng hàng)  (như hình vẽ). (ảnh 2)

Khi đó \(AC = BC + 1 = x + 1\,\,\left( {{\rm{km}}} \right).\)

Xét \[\Delta ADC\] vuông tại \[C\] có

\[CD = BC \cdot \tan 40^\circ  = x\tan 40^\circ  & \left( 1 \right)\]

Xét \[\Delta BDC\] vuông tại \[C\] có

\[CD = AC \cdot \tan 32^\circ  = \left( {x + 1} \right)\tan 32^\circ  & \left( 2 \right)\]

Từ \[\left( 1 \right)\] và \[\left( 2 \right)\] suy ra \[x\tan 40^\circ  = \left( {x + 1} \right)\tan 32^\circ \]

\[x\tan 40^\circ  = x\tan 32^\circ  + \tan 32^\circ \]

\[x\left( {\tan 40^\circ  - \tan 32^\circ } \right) = \tan 32^\circ \]

\[x = \frac{{\tan 32^\circ }}{{\tan 40^\circ  - \tan 32^\circ }} \approx 2,45\,\,\left( {{\rm{km}}} \right).\]

Vậy ngọn núi cao khoảng \[2,45{\rm{ km}}.\]

Lời giải

a) Với \(m \ne 0,\) ta viết phương trình \(x + my = n\) về dạng \(y =  - \frac{1}{m}x + \frac{n}{m}\).

Do đó đồ thị hàm số \(y =  - \frac{1}{m}x + \frac{n}{m}\) biểu diễn tất cả các nghiệm của phương trình bậc nhất một ẩn \(x + my = n\).

Nghiệm tổng quát của phương trình \(x + my = n\) là \(\left( {x;\,\, - \frac{1}{m}x + \frac{n}{m}} \right)\) với \(x \in \mathbb{R}\) tùy ý và \(m \ne 0.\)

b) Với \(m =  - 2;\,\,n = 1\) thì ta có \({d_1}:x - 2y = 1\).

Tọa độ giao điểm của hai đường thẳng \({d_1}\) và \({d_2}\) thỏa mãn hệ phương trình \(\left\{ \begin{array}{l}x - 2y = 1\\ - 2x + 3y =  - 1.\end{array} \right.\)

Nhân hai vế của phương trình thứ nhất với 2, ta được hệ \(\left\{ \begin{array}{l}2x - 4y = 2\\ - 2x + 3y =  - 1.\end{array} \right.\)

Cộng từng vế hai phương trình của hệ phương trình trên, ta được: \( - y = 1\) hay \(y =  - 1.\)

Thay \(y =  - 1\) vào phương trình \(x - 2y = 1,\) ta được: \(x - 2 \cdot \left( { - 1} \right) = 1\) hay \(x + 2 = 1,\) suy ra \(x =  - 1.\)

Vậy tọa độ giao điểm của hai đường thẳng \({d_1}\) và \({d_2}\) là\(\left( { - 1\,;\,\, - 1} \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP