Câu hỏi:

26/11/2025 100 Lưu

Giải các bất phương trình sau:

a) \(3x - 8 > 4x - 12.\)                                        

b) \[\frac{{4x - 1}}{2} + \frac{{6x - 19}}{6} \ge \frac{{9x - 11}}{3}.\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) \(3x - 8 < 4x - 12\)

 \(3x - 4x <  - 12 + 8\)

 \( - x <  - 4\)

   \(x > 4\).

Vậy nghiệm của bất phương trình đã cho là \(x > 4.\)

b) \[\frac{{4x - 1}}{2} + \frac{{6x - 19}}{6} \ge \frac{{9x - 11}}{3}\]

\[\frac{{3\left( {4x - 1} \right)}}{6} + \frac{{6x - 19}}{6} \ge \frac{{2\left( {9x - 11} \right)}}{6}\]

\[3\left( {4x - 1} \right) + 6x - 19 \ge 2\left( {9x - 11} \right)\]

\[12x - 3 + 6x - 19 \ge 18x - 22\]

\[12x + 6x - 18x \ge  - 22 + 3 + 19\]

                  \[0x \ge 0\].

Vậy nghiệm của bất phương trình đã cho là \(x \in \mathbb{R}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đặt \(BC = x\,\,\left( {{\rm{km}}} \right)\).

Tại hai điểm cách nhau \[1\,\,{\rm{km}}\] trên mặt đất người ta nhìn thấy đỉnh núi với góc nâng lần lượt là \[40^\circ \] và \[32^\circ \] \((A,\,\,B,\,\,C\) thẳng hàng)  (như hình vẽ). (ảnh 2)

Khi đó \(AC = BC + 1 = x + 1\,\,\left( {{\rm{km}}} \right).\)

Xét \[\Delta ADC\] vuông tại \[C\] có

\[CD = BC \cdot \tan 40^\circ  = x\tan 40^\circ  & \left( 1 \right)\]

Xét \[\Delta BDC\] vuông tại \[C\] có

\[CD = AC \cdot \tan 32^\circ  = \left( {x + 1} \right)\tan 32^\circ  & \left( 2 \right)\]

Từ \[\left( 1 \right)\] và \[\left( 2 \right)\] suy ra \[x\tan 40^\circ  = \left( {x + 1} \right)\tan 32^\circ \]

\[x\tan 40^\circ  = x\tan 32^\circ  + \tan 32^\circ \]

\[x\left( {\tan 40^\circ  - \tan 32^\circ } \right) = \tan 32^\circ \]

\[x = \frac{{\tan 32^\circ }}{{\tan 40^\circ  - \tan 32^\circ }} \approx 2,45\,\,\left( {{\rm{km}}} \right).\]

Vậy ngọn núi cao khoảng \[2,45{\rm{ km}}.\]

Lời giải

Gọi \[x,{\rm{ }}y\] (bước) lần lượt là số bước mà anh Sơn và chị Hà đi bộ trong 1 phút\[\left( {x,{\rm{ }}y \in \mathbb{N}*;\,\,x > y} \right).\]

Trong 2 phút, anh Sơn đi được \(2x\) (bước); chị Hà đi được \(2y\) (bước).

Nếu đi cùng trong 2 phút thì anh Sơn đi nhiều hơn chị Hà 20 bước nên

\(2x - 2y = 20\) hay \(x - y = 10 & \left( 1 \right)\)

Trong 3 phút anh Sơn đi được \(3x\) (bước)

Trong 5 phút chị Hà đi được \(5y\) (bước)

Do chị Hà đi trong 5 phút thì nhiều hơn anh Sơn đi trong 3 phút là 160 bước nên

\[5y - 3x = 160\] hay \[ - 3x + 5y = 160 &  & \left( 2 \right)\]

Từ \[\left( 1 \right)\] và \[\left( 2 \right)\] ta có hệ phương trình \(\left\{ \begin{array}{l}x - y = 10\\ - 3x + 5y = 160\end{array} \right.\).

Nhân hai vế của phương trình thứ nhất với \(3,\) ta được hệ phương trình \(\left\{ \begin{array}{l}3x - 3y = 30\\ - 3x + 5y = 160\end{array} \right..\)

Cộng từng vế hai phương trình của hệ phương trình trên, ta được: \(2y = 190\) nên \(y = 95\) (thỏa mãn).

Thay \(y = 95\) vào phương trình thứ nhất của hệ ban đầu, ta được:

\[x - 95 = 10\] suy ra \(x = 10 + 95 = 105\) (thỏa mãn).

Mỗi ngày anh Sơn đi bộ trong 1 giờ nên số bước anh Sơn đi là \(105 \cdot 60 = 6\,\,300\) (bước)

Mỗi ngày anh Sơn đi bộ trong 1 giờ nên số bước chị Hà đi là \(95 \cdot 60 = 5\,\,700\) (bước)

Vậy anh Sơn đạt được mục tiêu đề ra, còn chị Hà thì không đạt mục tiêu đề ra.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP