Bộ 5 đề thi giữa kì 1 Toán 9 Chân trời sáng tạo (Tự luận) có đáp án - Đề 3
32 người thi tuần này 4.6 250 lượt thi 8 câu hỏi 45 phút
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
Bộ 5 đề thi cuối kì 1 Toán 9 Chân trời sáng tạo (Tự luận) có đáp án - Đề 5
Bộ 5 đề thi cuối kì 1 Toán 9 Chân trời sáng tạo (Tự luận) có đáp án - Đề 4
Bộ 5 đề thi cuối kì 1 Toán 9 Chân trời sáng tạo (Tự luận) có đáp án - Đề 3
Bộ 5 đề thi cuối kì 1 Toán 9 Chân trời sáng tạo (Tự luận) có đáp án - Đề 2
Bộ 5 đề thi cuối kì 1 Toán 9 Chân trời sáng tạo (Tự luận) có đáp án - Đề 1
Bộ 5 đề thi cuối kì 1 Toán 9 Cánh diều (Tự luận) có đáp án - Đề 5
Bộ 5 đề thi cuối kì 1 Toán 9 Cánh diều (Tự luận) có đáp án - Đề 4
Bộ 5 đề thi cuối kì 1 Toán 9 Cánh diều (Tự luận) có đáp án - Đề 3
Danh sách câu hỏi:
Lời giải
a) Để phương trình đã cho là phương trình bậc nhất hai ẩn thì \(2a \ne 0\) hoặc \( - \left( {3b + 1} \right) \ne 0,\) tức là \(a \ne 0\) hoặc \(b \ne - \frac{1}{3}.\)
b) Để đường thẳng \(d\) đi qua điểm \(M\left( { - 7;6} \right)\) thì tọa độ điểm \(M\) thỏa mãn phương trình đã cho.
Thay \(x = - 7;\,\,y = 6\) vào phương trình \(2ax - \left( {3b + 1} \right)y = a - 1,\) ta được:
\[2a \cdot \left( { - 7} \right) - \left( {3b + 1} \right) \cdot 6 = a - 1\]
\( - 14a - 18b - 6 = a - 1\)
\( - 15a - 18b = 5\) (1)
Để đường thẳng \(d\) đi qua điểm \(N\left( {4; - 3} \right)\) thì tọa độ điểm \(N\) thỏa mãn phương trình đã cho.
Thay \(x = 4;y = - 3\) vào phương trình \(2ax - \left( {3b + 1} \right)y = a - 1,\) ta được:
\[2a \cdot 4 - \left( {3b + 1} \right) \cdot \left( { - 3} \right) = a - 1\]
\(8a + 9b + 3 = a - 1\)
\(7a + 9b = - 4\) (2)
Từ (1) và (2) ta có hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{ - 15a - 18b = 5}\\{7a + 9b = - 4}\end{array}} \right.\)
Nhân hai vế phương trình thứ hai với 2 ta có hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{ - 15a - 18b = 5}\\{14a + 18b = - 8}\end{array}} \right.\)
Cộng từng vế hai phương trình của hệ phương trình trên, ta được:
\(\left( { - 15a - 18b} \right) + \left( {14a + 18b} \right) = 5 + \left( { - 8} \right)\)
\( - a = - 3\)
\(a = 3\).
Thay \(a = 3\) vào phương trình \(7a + 9b = - 4,\) ta có:
\(7 \cdot 3 + 9b = - 4\) hay \(9b = - 25\) nên \(b = - \frac{{25}}{9}.\)
Vậy \(a = 3\) và \(b = - \frac{{25}}{9}.\)
Lời giải
a) \[2x\left( {3x - 1} \right) = \left( {3x - 1} \right)\]
\(2x\left( {3x - 1} \right) - \left( {3x - 1} \right) = 0\)
\(\left( {3x - 1} \right)\left( {2x - 1} \right) = 0\)
\(3x - 1 = 0\) hoặc \(2x - 1 = 0\)
\(x = \frac{1}{3}\) hoặc \(x = \frac{1}{2}\).
Vậy nghiệm của phương trình là \(x = \frac{1}{3}\) và \(x = \frac{1}{2}\).
b) Điều kiện xác định \(x \ne 0;\,\,x \ne 3.\)
\(\frac{{x + 3}}{{x - 3}} = \frac{3}{{{x^2} - 3x}} + \frac{1}{x}\)
\(\frac{{\left( {x + 3} \right)x}}{{x\left( {x - 3} \right)}} = \frac{3}{{x\left( {x - 3} \right)}} + \frac{{x - 3}}{{x\left( {x - 3} \right)}}\)
\(\left( {x + 3} \right)x = 3 + x - 3\)
\({x^2} + 3x = 3 + x - 3\)
\({x^2} + 2x = 0\)
\(x\left( {x + 2} \right) = 0\)
\(x = 0\) hoặc \(x + 2 = 0\)
\(x = 0\) hoặc \(x = - 2\).
Đối chiếu ĐKXĐ suy ra nghiệm phương trình đã cho là \(x = - 2\).Lời giải
a) \[4x + 1 < 2x - 9\]
\[4x - 2x < - 9 - 1\]
\[2x < \; - 10\]
\[x < - 5\].
Vậy nghiệm của bất phương trình là \(x < - 5.\)b) \(3\left( {x - 2} \right) + 7x \le 4\left( {x + 1} \right) + 14\)
\(3x - 6 + 7x \le 4x + 4 + 14\)
\(10x - 6 \le 4x + 18\)
\(10x - 4x \le 18 + 6\)
\(6x \le 24\)
\(x \le 4\).
Vậy nghiệm của bất phương trình là \(x \le 4\).Lời giải
Gọi \(x,\,\,y\) lần lượt là số sản phẩm mà tổ I và tổ II làm được trong tháng 2 \[\left( {0 < x,{\rm{ }}y < 700} \right)\].
Tháng 2 hai tổ làm được 700 sản phẩm nên ta có: \[x + y = 700\] (sản phẩm) \[\left( 1 \right)\]
Số sản phẩm tổ I làm được trong tháng 3 là: \[x + 20\% \cdot x = 1,2x\] (sản phẩm).
Số sản phẩm tổ II làm được trong tháng 3 là: \[y + 15\% \cdot y = 1,15y\] (sản phẩm).
Tháng 3 hai tổ làm được 830 sản phẩm nên ta có: \[1,2x + 1,15y = 830\] (sản phẩm) \[\left( 2 \right)\]
Từ \[\left( 1 \right)\] và \[\left( 2 \right)\] ta có hệ phương trình \(\left\{ \begin{array}{l}x + y = 700\\1,2x + 1,15y = 830\end{array} \right.\).
Từ phương trình thứ nhất ta có \(x + y = 700\) suy ra \(x = 700 - y\). Thế vào phương trình thứ hai, ta được:
\(1,2\left( {700 - y} \right) + 1,15y = 830\), suy ra \(0,05y = 10\) hay \(y = 200\) (thỏa mãn).
Từ đó \(x = 700 - y = 700 - 200 = 500\) (thỏa mãn).
Vậy trong tháng 2 tổ I làm được 500 sản phẩm, tổ II làm được 200 sản phẩm.
Lời giải
a) Hình tam giác có kích thước ba cạnh lần lượt là \(x + 2\,;\,\,x + 4\,;\,\,x + 5\) (đvđd).
Khi đó, chu vi hình tam giác là \(x + 2 + x + 4 + x + 5 = 3x + 11\) (đvđd).
Hình chữ nhật có chiều dài \(x + 3\) (đvđd) và chiều rộng \(x + 1\) (đvđd).
Khi đó, chu vi hình chữ nhật là \[2\left( {x + 3 + x + 1} \right) = 4x + 8\] (đvđd).
Vì chu vi của hình tam giác luôn lớn hơn chu vi của hình chữ nhật nên ta có \(3x + 11 > 4x + 8\).
Vậy bất phương trình cần tìm là: \(3x + 11 > 4x + 8\).
b) Giải bất phương trình:
\(3x + 11 > 4x + 8\)
\(4x - 3x < 11 - 8\)
\(x < 3.\)
Mà \(x\) là giá trị nguyên lớn nhất có thể nên \(x = 2.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Cho tam giác nhọn \[ABC\] có đường cao \[AK\].
a) Viết các tỉ số lượng giác của góc \(C.\)
b) Chứng minh rằng \[AK = \frac{{BC}}{{\cot B + \cot C}}\].
c) Vẽ hình chữ nhật \[CKAD\], \[BD\] cắt \[AK\] tại \[N\]. Chứng minh rằng \[\frac{1}{{A{K^2}}} = \frac{{{{\cot }^2}ACB}}{{D{N^2}}} + \frac{1}{{D{B^2}}}\].
Cho tam giác nhọn \[ABC\] có đường cao \[AK\].
a) Viết các tỉ số lượng giác của góc \(C.\)
b) Chứng minh rằng \[AK = \frac{{BC}}{{\cot B + \cot C}}\].
c) Vẽ hình chữ nhật \[CKAD\], \[BD\] cắt \[AK\] tại \[N\]. Chứng minh rằng \[\frac{1}{{A{K^2}}} = \frac{{{{\cot }^2}ACB}}{{D{N^2}}} + \frac{1}{{D{B^2}}}\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

