Quảng cáo
Trả lời:
a) Hình tam giác có kích thước ba cạnh lần lượt là \(x + 2\,;\,\,x + 4\,;\,\,x + 5\) (đvđd).
Khi đó, chu vi hình tam giác là \(x + 2 + x + 4 + x + 5 = 3x + 11\) (đvđd).
Hình chữ nhật có chiều dài \(x + 3\) (đvđd) và chiều rộng \(x + 1\) (đvđd).
Khi đó, chu vi hình chữ nhật là \[2\left( {x + 3 + x + 1} \right) = 4x + 8\] (đvđd).
Vì chu vi của hình tam giác luôn lớn hơn chu vi của hình chữ nhật nên ta có \(3x + 11 > 4x + 8\).
Vậy bất phương trình cần tìm là: \(3x + 11 > 4x + 8\).
b) Giải bất phương trình:
\(3x + 11 > 4x + 8\)
\(4x - 3x < 11 - 8\)
\(x < 3.\)
Mà \(x\) là giá trị nguyên lớn nhất có thể nên \(x = 2.\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \(x\) là số lượng khách đăng ký thêm, \(x > 0,\,\,x \in \mathbb{N}.\)
Khi đó, tổng số khách sẽ là \(80 + x\) (khách).
Cứ thêm một người thì giá chuyến du lịch còn lại là: \[5\,\,000\,\,000 - 50\,\,000 \cdot 1\] đồng/ người cho toàn bộ hành khách.
Thêm \(x\) người thì giá chuyến du lịch còn lại là: \[5\,\,000\,\,000 - 50\,\,000x\] đồng/người cho toàn bộ hành khách.
Doanh thu công ty du lịch thu được là:
\(T = \left( {80 + x} \right)\left( {5\,\,000\,\,000 - 50\,\,000x} \right) = 50\,\,000\left( {80 + x} \right)\left( {100 - x} \right)\) (đồng).
Để doanh thu cao nhất thì ta tìm giá trị lớn nhất của biểu thức \(T.\)
⦁ Chứng minh bất đẳng thức: \(ab \le {\left( {\frac{{a + b}}{2}} \right)^2}\,\,\,\,\left( * \right)\) với \(a,\,\,b\) là các số không âm.
Thật vậy, xét hiệu \({\left( {\frac{{a + b}}{2}} \right)^2} - ab = \frac{{{a^2} + 2ab + {b^2} - 4ab}}{4} = \frac{{{a^2} - 2ab + {b^2}}}{4} = \frac{{{{\left( {a - b} \right)}^2}}}{2}\)
Với mọi \(a,\,\,b\) là các số không âm, ta có:
\({\left( {a - b} \right)^2} \ge 0\) nên \(\frac{{{{\left( {a - b} \right)}^2}}}{2} \ge 0\) suy ra \({\left( {\frac{{a + b}}{2}} \right)^2} \ge ab\).
Dấu “=” xảy ra khi và chỉ khi \(a = b.\) Như vậy bất đẳng thức \(\left( * \right)\) đã được chứng minh.
⦁ Áp dụng bất đẳng thức \(\left( * \right)\) vào biểu thức \(T = 50\,\,000\left( {80 + x} \right)\left( {100 - x} \right),\) ta được:
\[T = 50\,\,000\left( {80 + x} \right)\left( {100 - x} \right) \le 20\,\,000 \cdot {\left( {\frac{{80 + x + 100 - x}}{2}} \right)^2} = 648\,\,000\,\,000\].
Dấu “=” xảy ra khi và chỉ khi \[80 + x = 100 - x\] hay \[x = 10\].
Vậy nếu đoàn khách có \(80 + 10 = 90\) người thì công ty du lịch đạt doanh thu cao nhất là \[648\,\,000\,\,000\] đồng.Lời giải
a) \[2x\left( {3x - 1} \right) = \left( {3x - 1} \right)\]
\(2x\left( {3x - 1} \right) - \left( {3x - 1} \right) = 0\)
\(\left( {3x - 1} \right)\left( {2x - 1} \right) = 0\)
\(3x - 1 = 0\) hoặc \(2x - 1 = 0\)
\(x = \frac{1}{3}\) hoặc \(x = \frac{1}{2}\).
Vậy nghiệm của phương trình là \(x = \frac{1}{3}\) và \(x = \frac{1}{2}\).
b) Điều kiện xác định \(x \ne 0;\,\,x \ne 3.\)
\(\frac{{x + 3}}{{x - 3}} = \frac{3}{{{x^2} - 3x}} + \frac{1}{x}\)
\(\frac{{\left( {x + 3} \right)x}}{{x\left( {x - 3} \right)}} = \frac{3}{{x\left( {x - 3} \right)}} + \frac{{x - 3}}{{x\left( {x - 3} \right)}}\)
\(\left( {x + 3} \right)x = 3 + x - 3\)
\({x^2} + 3x = 3 + x - 3\)
\({x^2} + 2x = 0\)
\(x\left( {x + 2} \right) = 0\)
\(x = 0\) hoặc \(x + 2 = 0\)
\(x = 0\) hoặc \(x = - 2\).
Đối chiếu ĐKXĐ suy ra nghiệm phương trình đã cho là \(x = - 2\).Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Cho tam giác nhọn \[ABC\] có đường cao \[AK\].
a) Viết các tỉ số lượng giác của góc \(C.\)
b) Chứng minh rằng \[AK = \frac{{BC}}{{\cot B + \cot C}}\].
c) Vẽ hình chữ nhật \[CKAD\], \[BD\] cắt \[AK\] tại \[N\]. Chứng minh rằng \[\frac{1}{{A{K^2}}} = \frac{{{{\cot }^2}ACB}}{{D{N^2}}} + \frac{1}{{D{B^2}}}\].
Cho tam giác nhọn \[ABC\] có đường cao \[AK\].
a) Viết các tỉ số lượng giác của góc \(C.\)
b) Chứng minh rằng \[AK = \frac{{BC}}{{\cot B + \cot C}}\].
c) Vẽ hình chữ nhật \[CKAD\], \[BD\] cắt \[AK\] tại \[N\]. Chứng minh rằng \[\frac{1}{{A{K^2}}} = \frac{{{{\cot }^2}ACB}}{{D{N^2}}} + \frac{1}{{D{B^2}}}\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

