Cho tam giác nhọn \[ABC\] có đường cao \[AK\].
a) Viết các tỉ số lượng giác của góc \(C.\)
b) Chứng minh rằng \[AK = \frac{{BC}}{{\cot B + \cot C}}\].
c) Vẽ hình chữ nhật \[CKAD\], \[BD\] cắt \[AK\] tại \[N\]. Chứng minh rằng \[\frac{1}{{A{K^2}}} = \frac{{{{\cot }^2}ACB}}{{D{N^2}}} + \frac{1}{{D{B^2}}}\].
Cho tam giác nhọn \[ABC\] có đường cao \[AK\].
a) Viết các tỉ số lượng giác của góc \(C.\)
b) Chứng minh rằng \[AK = \frac{{BC}}{{\cot B + \cot C}}\].
c) Vẽ hình chữ nhật \[CKAD\], \[BD\] cắt \[AK\] tại \[N\]. Chứng minh rằng \[\frac{1}{{A{K^2}}} = \frac{{{{\cot }^2}ACB}}{{D{N^2}}} + \frac{1}{{D{B^2}}}\].
Quảng cáo
Trả lời:
a) Xét \(\Delta AKC\) vuông tại \(K,\) ta có:
\(\sin C = \frac{{AK}}{{AC}},\,\,\cos C = \frac{{KC}}{{AC}},\)
\(\tan C = \frac{{AK}}{{KC}},\,\,\cot C = \frac{{KC}}{{AK}}.\)
![Cho tam giác nhọn \[ABC\] có đường cao \[AK\]. a) Viết các tỉ số lượng giác của góc \(C.\) (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/11/blobid2-1764163861.png)
Xét \(\Delta AKC\) vuông tại \(K,\) ta có: \(KC = AK \cdot \cot C.\)
Suy ra \(BC = BK + KC = AK \cdot \cot B + AK \cdot \cot C\)
Do đó \(BC = AK \cdot \left( {\cot B + \cot C} \right)\) nên \(AK = \frac{{BC}}{{\cot B + \cot C}}.\)
![Cho tam giác nhọn \[ABC\] có đường cao \[AK\]. a) Viết các tỉ số lượng giác của góc \(C.\) (ảnh 2)](https://video.vietjack.com/upload2/quiz_source1/2025/11/blobid3-1764163868.png)
c) Kẻ \[DI\, \bot \,BD\] tại \[D\] \[(I\]thuộc đường thẳng \[BC)\].
Ta có \(\widehat {ADN} + \widehat {CDN} = 90^\circ ,\,\,\widehat {CDI} + \widehat {CDN} = 90^\circ .\) Suy ra \[\widehat {ADN} = \widehat {CDI}\].
Xét \[\Delta ADN\] và \[\Delta CDI\] có: \(\widehat {DAN} = \widehat {DCI} = 90^\circ ,\,\,\widehat {ADN} = \widehat {CDI}\)
Suy ra \[\frac{{AD}}{{CD}} = \frac{{AN}}{{CI}} = \frac{{DN}}{{DI}}\] nên \[\frac{{A{D^2}}}{{C{D^2}}} = \frac{{D{N^2}}}{{D{I^2}}}.\]
Xét \(\Delta ADC\) vuông tại \(D,\) ta có: \[\cot \widehat {DAC} = \frac{{AD}}{{DC}}.\]
Vì \(CKAD\) là hình chữ nhật nên \(AD\,{\rm{//}}\,KC\) nên \[\widehat {ACB} = \widehat {DAC}\] (so le trong).
Suy ra \[{\cot ^2}\widehat {ACB} = {\cot ^2}\widehat {DAC} = {\left( {\frac{{AD}}{{DC}}} \right)^2} = \frac{{A{D^2}}}{{D{C^2}}} = \frac{{D{N^2}}}{{D{I^2}}}\].
Ta có: \[\frac{{{{\cot }^2}ACB}}{{D{N^2}}} + \frac{1}{{D{B^2}}} = \frac{{\frac{{D{N^2}}}{{D{I^2}}}}}{{D{N^2}}} + \frac{1}{{D{B^2}}} = \frac{1}{{D{I^2}}} + \frac{1}{{D{B^2}}} = \frac{{D{I^2} + D{B^2}}}{{D{I^2} \cdot D{B^2}}}\].
Xét \(\Delta BDI\) vuông tại \(D,\) theo định lí Pythagore, ta có: \(B{I^2} = D{I^2} + D{B^2}\).
Xét \(\Delta BCD\) vuông tại \(C,\) ta có \(\sin \widehat {DBC} = \frac{{CD}}{{BD}}.\)
Xét \(\Delta BDI\) vuông tại \(D,\) ta có \[\cos \widehat {DIB} = \frac{{DI}}{{BI}}.\]
Lại có \[\widehat {DBC} + \widehat {DIB} = 90^\circ \] nên \(\sin \widehat {DBC} = \cos \widehat {DIB}\) hay \(\frac{{CD}}{{BD}} = \frac{{DI}}{{BI}}.\)
Như vậy, \(CD \cdot BI = DI \cdot BD.\) Hay \(C{D^2} \cdot B{I^2} = D{I^2} \cdot B{D^2}.\)
Suy ra \[\frac{{{{\cot }^2}ACB}}{{D{N^2}}} + \frac{1}{{D{B^2}}} = \frac{{D{I^2} + D{B^2}}}{{D{I^2} \cdot D{B^2}}} = \frac{{B{I^2}}}{{D{I^2} \cdot D{B^2}}} = \frac{{B{I^2}}}{{C{D^2} \cdot B{I^2}}} = \frac{1}{{C{D^2}}}.\]
Vì \(CKAD\) là hình chữ nhật nên \(AK = DC.\) Do đó \[\frac{{{{\cot }^2}ACB}}{{D{N^2}}} + \frac{1}{{D{B^2}}} = \frac{1}{{A{K^2}}}.\]
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \(x\) là số lượng khách đăng ký thêm, \(x > 0,\,\,x \in \mathbb{N}.\)
Khi đó, tổng số khách sẽ là \(80 + x\) (khách).
Cứ thêm một người thì giá chuyến du lịch còn lại là: \[5\,\,000\,\,000 - 50\,\,000 \cdot 1\] đồng/ người cho toàn bộ hành khách.
Thêm \(x\) người thì giá chuyến du lịch còn lại là: \[5\,\,000\,\,000 - 50\,\,000x\] đồng/người cho toàn bộ hành khách.
Doanh thu công ty du lịch thu được là:
\(T = \left( {80 + x} \right)\left( {5\,\,000\,\,000 - 50\,\,000x} \right) = 50\,\,000\left( {80 + x} \right)\left( {100 - x} \right)\) (đồng).
Để doanh thu cao nhất thì ta tìm giá trị lớn nhất của biểu thức \(T.\)
⦁ Chứng minh bất đẳng thức: \(ab \le {\left( {\frac{{a + b}}{2}} \right)^2}\,\,\,\,\left( * \right)\) với \(a,\,\,b\) là các số không âm.
Thật vậy, xét hiệu \({\left( {\frac{{a + b}}{2}} \right)^2} - ab = \frac{{{a^2} + 2ab + {b^2} - 4ab}}{4} = \frac{{{a^2} - 2ab + {b^2}}}{4} = \frac{{{{\left( {a - b} \right)}^2}}}{2}\)
Với mọi \(a,\,\,b\) là các số không âm, ta có:
\({\left( {a - b} \right)^2} \ge 0\) nên \(\frac{{{{\left( {a - b} \right)}^2}}}{2} \ge 0\) suy ra \({\left( {\frac{{a + b}}{2}} \right)^2} \ge ab\).
Dấu “=” xảy ra khi và chỉ khi \(a = b.\) Như vậy bất đẳng thức \(\left( * \right)\) đã được chứng minh.
⦁ Áp dụng bất đẳng thức \(\left( * \right)\) vào biểu thức \(T = 50\,\,000\left( {80 + x} \right)\left( {100 - x} \right),\) ta được:
\[T = 50\,\,000\left( {80 + x} \right)\left( {100 - x} \right) \le 20\,\,000 \cdot {\left( {\frac{{80 + x + 100 - x}}{2}} \right)^2} = 648\,\,000\,\,000\].
Dấu “=” xảy ra khi và chỉ khi \[80 + x = 100 - x\] hay \[x = 10\].
Vậy nếu đoàn khách có \(80 + 10 = 90\) người thì công ty du lịch đạt doanh thu cao nhất là \[648\,\,000\,\,000\] đồng.Lời giải
a) \[2x\left( {3x - 1} \right) = \left( {3x - 1} \right)\]
\(2x\left( {3x - 1} \right) - \left( {3x - 1} \right) = 0\)
\(\left( {3x - 1} \right)\left( {2x - 1} \right) = 0\)
\(3x - 1 = 0\) hoặc \(2x - 1 = 0\)
\(x = \frac{1}{3}\) hoặc \(x = \frac{1}{2}\).
Vậy nghiệm của phương trình là \(x = \frac{1}{3}\) và \(x = \frac{1}{2}\).
b) Điều kiện xác định \(x \ne 0;\,\,x \ne 3.\)
\(\frac{{x + 3}}{{x - 3}} = \frac{3}{{{x^2} - 3x}} + \frac{1}{x}\)
\(\frac{{\left( {x + 3} \right)x}}{{x\left( {x - 3} \right)}} = \frac{3}{{x\left( {x - 3} \right)}} + \frac{{x - 3}}{{x\left( {x - 3} \right)}}\)
\(\left( {x + 3} \right)x = 3 + x - 3\)
\({x^2} + 3x = 3 + x - 3\)
\({x^2} + 2x = 0\)
\(x\left( {x + 2} \right) = 0\)
\(x = 0\) hoặc \(x + 2 = 0\)
\(x = 0\) hoặc \(x = - 2\).
Đối chiếu ĐKXĐ suy ra nghiệm phương trình đã cho là \(x = - 2\).Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

