Câu hỏi:

26/11/2025 9 Lưu

Cho tam giác nhọn \[ABC\] có đường cao \[AK\].

a) Viết các tỉ số lượng giác của góc \(C.\)

b) Chứng minh rằng \[AK = \frac{{BC}}{{\cot B + \cot C}}\].

c) Vẽ hình chữ nhật \[CKAD\], \[BD\] cắt \[AK\] tại \[N\]. Chứng minh rằng \[\frac{1}{{A{K^2}}} = \frac{{{{\cot }^2}ACB}}{{D{N^2}}} + \frac{1}{{D{B^2}}}\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Xét \(\Delta AKC\) vuông tại \(K,\) ta có:

\(\sin C = \frac{{AK}}{{AC}},\,\,\cos C = \frac{{KC}}{{AC}},\)

\(\tan C = \frac{{AK}}{{KC}},\,\,\cot C = \frac{{KC}}{{AK}}.\)

Cho tam giác nhọn \[ABC\] có đường cao \[AK\].  a) Viết các tỉ số lượng giác của góc \(C.\) (ảnh 1)
b) Xét \(\Delta AKB\) vuông tại \(K,\) ta có: \(BK = AK \cdot \cot B.\)

Xét \(\Delta AKC\) vuông tại \(K,\) ta có: \(KC = AK \cdot \cot C.\)

Suy ra \(BC = BK + KC = AK \cdot \cot B + AK \cdot \cot C\)

Do đó \(BC = AK \cdot \left( {\cot B + \cot C} \right)\) nên \(AK = \frac{{BC}}{{\cot B + \cot C}}.\)

Cho tam giác nhọn \[ABC\] có đường cao \[AK\].  a) Viết các tỉ số lượng giác của góc \(C.\) (ảnh 2)

c) Kẻ \[DI\, \bot \,BD\] tại \[D\] \[(I\]thuộc đường thẳng \[BC)\].

Ta có \(\widehat {ADN} + \widehat {CDN} = 90^\circ ,\,\,\widehat {CDI} + \widehat {CDN} = 90^\circ .\) Suy ra \[\widehat {ADN} = \widehat {CDI}\].

Xét \[\Delta ADN\] và \[\Delta CDI\] có: \(\widehat {DAN} = \widehat {DCI} = 90^\circ ,\,\,\widehat {ADN} = \widehat {CDI}\)

Do đó  (g.g).

Suy ra \[\frac{{AD}}{{CD}} = \frac{{AN}}{{CI}} = \frac{{DN}}{{DI}}\] nên \[\frac{{A{D^2}}}{{C{D^2}}} = \frac{{D{N^2}}}{{D{I^2}}}.\]

Xét \(\Delta ADC\) vuông tại \(D,\) ta có: \[\cot \widehat {DAC} = \frac{{AD}}{{DC}}.\]

Vì \(CKAD\) là hình chữ nhật nên \(AD\,{\rm{//}}\,KC\) nên \[\widehat {ACB} = \widehat {DAC}\] (so le trong).

Suy ra \[{\cot ^2}\widehat {ACB} = {\cot ^2}\widehat {DAC} = {\left( {\frac{{AD}}{{DC}}} \right)^2} = \frac{{A{D^2}}}{{D{C^2}}} = \frac{{D{N^2}}}{{D{I^2}}}\].

Ta có: \[\frac{{{{\cot }^2}ACB}}{{D{N^2}}} + \frac{1}{{D{B^2}}} = \frac{{\frac{{D{N^2}}}{{D{I^2}}}}}{{D{N^2}}} + \frac{1}{{D{B^2}}} = \frac{1}{{D{I^2}}} + \frac{1}{{D{B^2}}} = \frac{{D{I^2} + D{B^2}}}{{D{I^2} \cdot D{B^2}}}\].

Xét \(\Delta BDI\) vuông tại \(D,\) theo định lí Pythagore, ta có: \(B{I^2} = D{I^2} + D{B^2}\).

Xét \(\Delta BCD\) vuông tại \(C,\) ta có \(\sin \widehat {DBC} = \frac{{CD}}{{BD}}.\)

Xét \(\Delta BDI\) vuông tại \(D,\) ta có \[\cos \widehat {DIB} = \frac{{DI}}{{BI}}.\]

Lại có \[\widehat {DBC} + \widehat {DIB} = 90^\circ \] nên \(\sin \widehat {DBC} = \cos \widehat {DIB}\) hay \(\frac{{CD}}{{BD}} = \frac{{DI}}{{BI}}.\)

Như vậy, \(CD \cdot BI = DI \cdot BD.\) Hay \(C{D^2} \cdot B{I^2} = D{I^2} \cdot B{D^2}.\)

Suy ra \[\frac{{{{\cot }^2}ACB}}{{D{N^2}}} + \frac{1}{{D{B^2}}} = \frac{{D{I^2} + D{B^2}}}{{D{I^2} \cdot D{B^2}}} = \frac{{B{I^2}}}{{D{I^2} \cdot D{B^2}}} = \frac{{B{I^2}}}{{C{D^2} \cdot B{I^2}}} = \frac{1}{{C{D^2}}}.\]

Vì \(CKAD\) là hình chữ nhật nên \(AK = DC.\) Do đó \[\frac{{{{\cot }^2}ACB}}{{D{N^2}}} + \frac{1}{{D{B^2}}} = \frac{1}{{A{K^2}}}.\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(x\) là số lượng khách đăng ký thêm, \(x > 0,\,\,x \in \mathbb{N}.\)

Khi đó, tổng số khách sẽ là \(80 + x\) (khách).

Cứ thêm một người thì giá chuyến du lịch còn lại là: \[5\,\,000\,\,000 - 50\,\,000 \cdot 1\] đồng/ người cho toàn bộ hành khách.

Thêm \(x\) người thì giá chuyến du lịch còn lại là: \[5\,\,000\,\,000 - 50\,\,000x\] đồng/người cho toàn bộ hành khách.

Doanh thu công ty du lịch thu được là:

\(T = \left( {80 + x} \right)\left( {5\,\,000\,\,000 - 50\,\,000x} \right) = 50\,\,000\left( {80 + x} \right)\left( {100 - x} \right)\) (đồng).

Để doanh thu cao nhất thì ta tìm giá trị lớn nhất của biểu thức \(T.\)

⦁ Chứng minh bất đẳng thức: \(ab \le {\left( {\frac{{a + b}}{2}} \right)^2}\,\,\,\,\left( * \right)\) với \(a,\,\,b\) là các số không âm.

Thật vậy, xét hiệu \({\left( {\frac{{a + b}}{2}} \right)^2} - ab = \frac{{{a^2} + 2ab + {b^2} - 4ab}}{4} = \frac{{{a^2} - 2ab + {b^2}}}{4} = \frac{{{{\left( {a - b} \right)}^2}}}{2}\)

Với mọi \(a,\,\,b\) là các số không âm, ta có:

\({\left( {a - b} \right)^2} \ge 0\) nên \(\frac{{{{\left( {a - b} \right)}^2}}}{2} \ge 0\) suy ra \({\left( {\frac{{a + b}}{2}} \right)^2} \ge ab\).

Dấu “=” xảy ra khi và chỉ khi \(a = b.\) Như vậy bất đẳng thức \(\left( * \right)\) đã được chứng minh.

⦁ Áp dụng bất đẳng thức \(\left( * \right)\) vào biểu thức \(T = 50\,\,000\left( {80 + x} \right)\left( {100 - x} \right),\) ta được:

\[T = 50\,\,000\left( {80 + x} \right)\left( {100 - x} \right) \le 20\,\,000 \cdot {\left( {\frac{{80 + x + 100 - x}}{2}} \right)^2} = 648\,\,000\,\,000\].

Dấu “=” xảy ra khi và chỉ khi \[80 + x = 100 - x\] hay \[x = 10\].

Vậy nếu đoàn khách có \(80 + 10 = 90\) người thì công ty du lịch đạt doanh thu cao nhất là \[648\,\,000\,\,000\] đồng.

Lời giải

a) \[2x\left( {3x - 1} \right) = \left( {3x - 1} \right)\]

 \(2x\left( {3x - 1} \right) - \left( {3x - 1} \right) = 0\)

         \(\left( {3x - 1} \right)\left( {2x - 1} \right) = 0\)

\(3x - 1 = 0\) hoặc \(2x - 1 = 0\)

\(x = \frac{1}{3}\) hoặc \(x = \frac{1}{2}\).

Vậy nghiệm của phương trình là \(x = \frac{1}{3}\) và \(x = \frac{1}{2}\).

b) Điều kiện xác định \(x \ne 0;\,\,x \ne 3.\)

\(\frac{{x + 3}}{{x - 3}} = \frac{3}{{{x^2} - 3x}} + \frac{1}{x}\)

\(\frac{{\left( {x + 3} \right)x}}{{x\left( {x - 3} \right)}} = \frac{3}{{x\left( {x - 3} \right)}} + \frac{{x - 3}}{{x\left( {x - 3} \right)}}\)

\(\left( {x + 3} \right)x = 3 + x - 3\)

\({x^2} + 3x = 3 + x - 3\)

\({x^2} + 2x = 0\)

\(x\left( {x + 2} \right) = 0\)

\(x = 0\) hoặc \(x + 2 = 0\)

\(x = 0\) hoặc \(x =  - 2\).

Đối chiếu ĐKXĐ suy ra nghiệm phương trình đã cho là \(x =  - 2\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Cho hình tam giác và hình chữ nhật có kích thước hình bên dưới. Biết chu vi của hình tam giác luôn lớn hơn chu vi của hình chữ nhật.

Cho hình tam giác và hình chữ nhật có kích thước hình bên dưới. Biết chu vi của hình tam giác luôn lớn hơn chu vi của hình chữ nhật. (ảnh 1)

a) Hãy viết bất phương trình phù hợp với dữ liệu đề bài.

b) Tìm giá trị nguyên lớn nhất có thể của \(x\) thỏa mãn yêu cầu bài toán.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP