Bộ 5 đề thi cuối kì 1 Toán 9 Chân trời sáng tạo (Tự luận) có đáp án - Đề 4
49 người thi tuần này 4.6 323 lượt thi 15 câu hỏi 45 phút
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
Bộ 5 đề thi cuối kì 1 Toán 9 Chân trời sáng tạo (Tự luận) có đáp án - Đề 5
Bộ 5 đề thi cuối kì 1 Toán 9 Chân trời sáng tạo (Tự luận) có đáp án - Đề 4
Bộ 5 đề thi cuối kì 1 Toán 9 Chân trời sáng tạo (Tự luận) có đáp án - Đề 3
Bộ 5 đề thi cuối kì 1 Toán 9 Chân trời sáng tạo (Tự luận) có đáp án - Đề 2
Bộ 5 đề thi cuối kì 1 Toán 9 Chân trời sáng tạo (Tự luận) có đáp án - Đề 1
Bộ 5 đề thi cuối kì 1 Toán 9 Cánh diều (Tự luận) có đáp án - Đề 5
Bộ 5 đề thi cuối kì 1 Toán 9 Cánh diều (Tự luận) có đáp án - Đề 4
Bộ 5 đề thi cuối kì 1 Toán 9 Cánh diều (Tự luận) có đáp án - Đề 3
Danh sách câu hỏi:
Đoạn văn 1
Lời giải
a) – Xét biểu thức \(A = \frac{{\sqrt x \left( {x + 1} \right)}}{{2\left( {\sqrt x - 1} \right)}}\).
Điều kiện xác định của biểu thức \(A\) và \(x \ge 0\) và \(\sqrt x - 1 \ne 0\) hay \(x \ge 0,\,\,x \ne 1.\)
– Xét biểu thức \(B = \frac{1}{{x + \sqrt x }} + \frac{{2\sqrt x }}{{x - 1}} - \frac{1}{{x - \sqrt x }}\).
Với \(x \ge 0\), ta có:
⦁ \(x + \sqrt x = \sqrt x \left( {\sqrt x + 1} \right)\); \(x - \sqrt x = \sqrt x \left( {\sqrt x - 1} \right);\) \(x - 1 = \left( {\sqrt x + 1} \right)\left( {\sqrt x - 1} \right).\)
⦁ \(x \ge 0\) nên \(\sqrt x \ge 0,\) suy ra \(\sqrt x + 1 > 0.\)
Điều kiện xác định của biểu thức \(B\) là \(x \ge 0\) và \(\sqrt x \ne 0,\,\,x - 1 \ne 0\) hay \(x > 0,\,\,x \ne 1.\)
Vậy, điều kiện xác định của biểu thức \(A = \frac{{\sqrt x \left( {x + 1} \right)}}{{2\left( {\sqrt x - 1} \right)}}\) là \(x \ge 0,x \ne 1\) và điều kiện xác định của biểu thức \(B = \frac{1}{{x + \sqrt x }} + \frac{{2\sqrt x }}{{x - 1}} - \frac{1}{{x - \sqrt x }}\) là \(x > 0,x \ne 1.\)
Lời giải
b) Thay \(x = \frac{1}{9}\) (thỏa mãn điều kiện) vào biểu thức \(A,\) ta được:
\(A = \frac{{\sqrt {\frac{1}{9}} \left( {\frac{1}{9} + 1} \right)}}{{2\left( {\sqrt {\frac{1}{9}} - 1} \right)}} = \frac{{\frac{1}{3}.\frac{{10}}{9}}}{{2\left( {\frac{1}{3} - 1} \right)}} = \frac{{\frac{{10}}{{27}}}}{{ - \frac{4}{3}}} = - \frac{5}{{18}}.\)
Vậy \(A = - \frac{5}{{18}}\) khi \(x = \frac{1}{9}\).
Lời giải
c) Với \(x > 0,x \ne 1\), ta có:
\(B = \frac{1}{{x + \sqrt x }} + \frac{{2\sqrt x }}{{x - 1}} - \frac{1}{{x - \sqrt x }}\)
\( = \frac{1}{{\sqrt x \left( {\sqrt x + 1} \right)}} + \frac{{2\sqrt x }}{{\left( {\sqrt x + 1} \right)\left( {\sqrt x - 1} \right)}} - \frac{1}{{\sqrt x \left( {\sqrt x - 1} \right)}}\)
\[ = \frac{{\sqrt x - 1}}{{\sqrt x \left( {\sqrt x + 1} \right)\left( {\sqrt x - 1} \right)}} + \frac{{2\sqrt x \cdot \sqrt x }}{{\sqrt x \left( {\sqrt x + 1} \right)\left( {\sqrt x - 1} \right)}} - \frac{{\sqrt x + 1}}{{\sqrt x \left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}\]
\( = \frac{{\sqrt x - 1 + 2x - \sqrt x - 1}}{{\sqrt x \left( {\sqrt x + 1} \right)\left( {\sqrt x - 1} \right)}}\)\( = \frac{{2x - 2}}{{\sqrt x \left( {\sqrt x + 1} \right)\left( {\sqrt x - 1} \right)}}\)
\( = \frac{{2\left( {x - 1} \right)}}{{\sqrt x \left( {x - 1} \right)}}\)\( = \frac{2}{{\sqrt x }}\).
Vậy với \(x > 0,x \ne 1\) thì \(B = \frac{2}{{\sqrt x }}\).
Lời giải
d) Với \(x > 1,\) ta có:
Xét \(P = \sqrt x + 1 + \frac{2}{{\sqrt x - 1}} = \sqrt x - 1 + \frac{2}{{\sqrt x - 1}} + 2\) với \(x > 1.\)
Do \(x > 1\) nên \(\sqrt x - 1 > 0\).
Áp dụng bất đẳng thức Cauchy, ta có:
\(\sqrt x - 1 + \frac{2}{{\sqrt x - 1}} \ge 2\sqrt {\left( {\sqrt x - 1} \right).\frac{2}{{\sqrt x - 1}}} \)
\(\sqrt x - 1 + \frac{2}{{\sqrt x - 1}} \ge 2\sqrt 2 \)
\(\sqrt x - 1 + \frac{2}{{\sqrt x - 1}} + 2 \ge 2\sqrt 2 + 2\)
Suy ra \(P \ge 2\sqrt 2 + 2\) với \(x > 1\).
Dấu “=” xảy ra khi và chỉ khi \(\sqrt x - 1 = \frac{2}{{\sqrt x - 1}}\) .
Giải phương trình:
\(\sqrt x - 1 = \frac{2}{{\sqrt x - 1}}\)
\({\left( {\sqrt x - 1} \right)^2} = 2\)
\(\sqrt x - 1 = \sqrt 2 \) (do \(\sqrt x - 1 > 0)\)
\(\sqrt x = \sqrt 2 + 1\)
\(x = 3 + 2\sqrt 2 \) (thỏa mãn).
Vậy giá trị nhỏ nhất của \(P = 2\sqrt 2 + 2\) khi \(x = 3 + 2\sqrt 2 \).
Đoạn văn 2
(3,5 điểm)
Lời giải
a) Điều kiện xác định \(x \ne - 1,x \ne 3\).
Ta có: \(\frac{x}{{2\left( {x - 3} \right)}} + \frac{x}{{2x + 2}} = \frac{{2x}}{{\left( {x + 1} \right)\left( {x - 3} \right)}}\)
\(\frac{{x\left( {x + 1} \right)}}{{2\left( {x + 1} \right)\left( {x - 3} \right)}} + \frac{{x\left( {x - 3} \right)}}{{2\left( {x + 1} \right)\left( {x - 3} \right)}} = \frac{{2x \cdot 2}}{{2\left( {x + 1} \right)\left( {x - 3} \right)}}\)
\(x\left( {x + 1} \right) + x\left( {x - 3} \right) = 2x \cdot 2\)
\({x^2} + x + {x^2} - 3x - 4x = 0\)
\(2{x^2} - 6x = 0\)
\(2x\left( {x - 3} \right) = 0\)
\(x = 0\) hoặc \(x - 3 = 0\).
\(x = 0\) (thỏa mãn) hoặc \(x = 3\) (loại).
Vậy phương trình có nghiệm là \(x = 0\).Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 8
3. Người ta dùng một loại xe tải để chở bia cho một nhà máy. Mỗi thùng bia 24 lon nặng trung bình \(6,7{\rm{ kg}}{\rm{.}}\) Theo khuyến nghị, trọng tải của xe (tức là tổng khối lượng tối đa cho phép mà xe có thể chở) là \(5,25\) tấn.
a) Viết bất phương trình mô tả tình huống trên.
b) Hỏi xe có thể chở được tối đa bao nhiêu thùng bia, biết bác tài xế nặng \(65{\rm{ kg}}{\rm{.}}\)
3. Người ta dùng một loại xe tải để chở bia cho một nhà máy. Mỗi thùng bia 24 lon nặng trung bình \(6,7{\rm{ kg}}{\rm{.}}\) Theo khuyến nghị, trọng tải của xe (tức là tổng khối lượng tối đa cho phép mà xe có thể chở) là \(5,25\) tấn.
a) Viết bất phương trình mô tả tình huống trên.
b) Hỏi xe có thể chở được tối đa bao nhiêu thùng bia, biết bác tài xế nặng \(65{\rm{ kg}}{\rm{.}}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Đoạn văn 3
(1,5 điểm) Tháp Discovery Complex A với quy mô 54 tầng, đang là tòa nhà cao nhất quận Cầu Giấy. Tại một thời điểm trong ngày mặt trời tạo với mặt đất một góc xấp xỉ \(68^\circ \) và bóng của tòa nhà trên mặt đất dài khoảng \(79{\rm{ m}}{\rm{.}}\)

Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Đoạn văn 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
