Câu hỏi:

24/12/2025 36 Lưu

(3,5 điểm)

Giải các phương trình, bất phương trình sau:

a) \(\frac{x}{{2\left( {x - 3} \right)}} + \frac{x}{{2x + 2}} = \frac{{2x}}{{\left( {x + 1} \right)\left( {x - 3} \right)}}.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Điều kiện xác định \(x \ne - 1,x \ne 3\).

Ta có: \(\frac{x}{{2\left( {x - 3} \right)}} + \frac{x}{{2x + 2}} = \frac{{2x}}{{\left( {x + 1} \right)\left( {x - 3} \right)}}\)

\(\frac{{x\left( {x + 1} \right)}}{{2\left( {x + 1} \right)\left( {x - 3} \right)}} + \frac{{x\left( {x - 3} \right)}}{{2\left( {x + 1} \right)\left( {x - 3} \right)}} = \frac{{2x \cdot 2}}{{2\left( {x + 1} \right)\left( {x - 3} \right)}}\)

\(x\left( {x + 1} \right) + x\left( {x - 3} \right) = 2x \cdot 2\)

\({x^2} + x + {x^2} - 3x - 4x = 0\)

\(2{x^2} - 6x = 0\)

\(2x\left( {x - 3} \right) = 0\)

\(x = 0\) hoặc \(x - 3 = 0\).

\(x = 0\) (thỏa mãn) hoặc \(x = 3\) (loại).

Vậy phương trình có nghiệm là \(x = 0\).

Câu hỏi cùng đoạn

Câu 2:

1. Giải các phương trình, bất phương trình sau:

b) \(1 + \frac{{x + 2}}{5} > x + \frac{{x - 2}}{2} + \frac{{x + 3}}{3}.\)    

Xem lời giải

verified Giải bởi Vietjack

b) \(1 + \frac{{x + 2}}{5} > x + \frac{{x - 2}}{2} + \frac{{x + 3}}{3}.\)

\(\frac{{30 + 6x + 12}}{{30}} > \frac{{30x + 15\left( {x - 2} \right) + 10\left( {x + 3} \right)}}{{30}}\)

     \(\frac{{6x + 42}}{{30}} > \frac{{30x + 15x - 30 + 10x + 30}}{{30}}\)

     \[\frac{{6x + 42}}{{30}} > \frac{{55x}}{{30}}\]

       \(6x + 42 > 55x\)

       \(6x - 55x >  - 42\)

              \( - 49x >  - 42\)

                    \(x < \frac{6}{7}\).

Vậy nghiệm cúa bất phương trình là \(x < \frac{6}{7}.\)

Câu 3:

1. Giải các phương trình, bất phương trình sau:

c) \(\sqrt {9{x^2} - 6x + 1} = 2.\)

Xem lời giải

verified Giải bởi Vietjack

c) \(\sqrt {9{x^2} - 6x + 1} = 2\)

\(\sqrt {{{\left( {3x - 1} \right)}^2}} = 2\)

\(\left| {3x - 1} \right| = 2\)

 

Trường hợp 1. \(3x - 1 = 2\)

 \(3x = 3\)

 \(x = 1\).

Trường hợp 2: \(3x - 1 = - 2\)

 \(3x = - 1\)

 \(x = - \frac{1}{3}.\)

     

Vậy phương trình đã cho có nghiệm \(x = 1;\,\,x = - \frac{1}{3}.\)

Câu 4:

3. Người ta dùng một loại xe tải để chở bia cho một nhà máy. Mỗi thùng bia 24 lon nặng trung bình \(6,7{\rm{ kg}}{\rm{.}}\) Theo khuyến nghị, trọng tải của xe (tức là tổng khối lượng tối đa cho phép mà xe có thể chở) là \(5,25\) tấn.

a) Viết bất phương trình mô tả tình huống trên.

b) Hỏi xe có thể chở được tối đa bao nhiêu thùng bia, biết bác tài xế nặng \(65{\rm{ kg}}{\rm{.}}\)

Xem lời giải

verified Giải bởi Vietjack

3. a) Đổi \(5,25\) tấn = \(5\,\,250\) kg.

Gọi \(x\) là số thùng bia mà xe có thể chở (\(x \in {\mathbb{N}^ * }\), đơn vị: thùng).

Khối lượng của \(x\) thùng bia là: \(6,7x\) (kg).

Tổng khối lượng của các thùng bia và bác tài xế là: \(6,7x + 65\) (kg).

Theo bài, trọng tải của xe (tức là tổng khối lượng tối đa cho phép mà xe có thể chở) là \(5,25\) tấn nên ta có bất phương trình: \(65 + 6,7x \le 5\,\,250\).

b) Giải bất phương trình:

\(65 + 6,7x \le 5\,\,250\)

\(6,7x \le 5\,\,185\)

\(x \le \frac{{51\,\,850}}{{67}}\,\,\,\left( { \approx 773,88} \right)\).

\(x \in {\mathbb{N}^ * }\) và cần tìm \(x\) có giá trị lớn nhất nên \(x = 773.\)

Vậy xe có thể chở được tối đa \(773\) thùng bia.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) – Xét biểu thức \(A = \frac{{\sqrt x \left( {x + 1} \right)}}{{2\left( {\sqrt x - 1} \right)}}\).

Điều kiện xác định của biểu thức \(A\)\(x \ge 0\)\(\sqrt x - 1 \ne 0\) hay \(x \ge 0,\,\,x \ne 1.\)

– Xét biểu thức \(B = \frac{1}{{x + \sqrt x }} + \frac{{2\sqrt x }}{{x - 1}} - \frac{1}{{x - \sqrt x }}\).

Với \(x \ge 0\), ta có:

\(x + \sqrt x = \sqrt x \left( {\sqrt x + 1} \right)\); \(x - \sqrt x = \sqrt x \left( {\sqrt x - 1} \right);\) \(x - 1 = \left( {\sqrt x + 1} \right)\left( {\sqrt x - 1} \right).\)

\(x \ge 0\) nên \(\sqrt x \ge 0,\) suy ra \(\sqrt x + 1 > 0.\)

Điều kiện xác định của biểu thức \(B\)\(x \ge 0\)\(\sqrt x \ne 0,\,\,x - 1 \ne 0\) hay \(x > 0,\,\,x \ne 1.\)

Vậy, điều kiện xác định của biểu thức \(A = \frac{{\sqrt x \left( {x + 1} \right)}}{{2\left( {\sqrt x - 1} \right)}}\)\(x \ge 0,x \ne 1\) và điều kiện xác định của biểu thức \(B = \frac{1}{{x + \sqrt x }} + \frac{{2\sqrt x }}{{x - 1}} - \frac{1}{{x - \sqrt x }}\)\(x > 0,x \ne 1.\)

Lời giải

a) Chứng minh bốn điểm \[A,O,E,C\] cùng thuộc một đường tròn. (ảnh 1)

a) Gọi \[F\] là trung điểm của \[AO\]. Khi đó \[FO = FA = \frac{1}{2}AO\].

Xét \[\Delta OMN\] cân tại \[O\] (do \[OM = ON\]) có \[OE\] là đường trung tuyến nên cũng là đường cao của \[\Delta OMN\], suy ra \[MN \bot OE\] tại \[E\], suy ra \[\widehat {OEM} = 90^\circ \] hay \[\Delta EAO\] vuông tại \[E\].

Xét \[\Delta EAO\] vuông tại \[E\]\[EF\] là đường trung tuyến ứng với cạnh huyền \(AO\) nên \[EF = \frac{1}{2}AO\].

Xét \[\Delta CAO\] vuông tại \[C\]\[CF\] là đường trung tuyến ứng với cạnh huyền \(AO\) nên \[CF = \frac{1}{2}AO\].

\[EF = CF = FO = FA = \frac{1}{2}AO\] nên bốn điểm \[A,O,E,C\] cùng thuộc đường tròn tâm \[F\] đường kính \[AO.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP