Câu hỏi:

12/04/2025 42

Câu 9-11. Cho đường tròn \(\left( {O;\,\,R} \right)\). Từ \(A\) trên \(\left( O \right),\) kẻ tiếp tuyến \(d\) với  \(\left( O \right).\) Trên đường thẳng \(d\) lấy điểm \(M\) bất kỳ \(\left( M \right.\) khác \(\left. A \right),\) kẻ cát tuyến \(MNP.\) Gọi \(K\) là trung điểm của \(NP,\) kẻ tiếp tuyến \(MB.\) Kẻ \[AC \bot MB,\,\,BD \bot AM\,\,\left( {C \in MB,\,\,D \in AM} \right).\] Gọi\[H\] là giao điểm của \[AC\]\[BD,\] \[I\] là giao điểm của \[OM\]\[AB.\]

a) Chứng minh tứ giác \(AMBO\) nội tiếp.

Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k).

Tải ngay

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Chứng minh tứ giác \(AMBO\) nội tiếp. (ảnh 1)

a) Ta có \(\widehat {OAM} = 90^\circ \) (do \[MA\] là tiếp tuyến của \[\left( O \right)\], \[A\] là tiếp điểm).

Suy ra ba điểm \(O,\,\,A,\,\,M\) cùng thuộc một đường tròn đường kính OM.1

Lại có \(\widehat {OBM} = 90^\circ \) (do \[MB\] là tiếp tuyến của \[\left( O \right)\], \[B\] là tiếp điểm).

Suy ra ba điểm \(O,\,\,B,\,\,M\) cùng thuộc một đường tròn đường kính OM.2

Từ \[\left( 1 \right)\]\[\left( 2 \right)\] ta được tứ giác \[AMBO\] nội tiếp đường tròn đường kính \[OM.\]

Từ \[\left( 1 \right)\]\[\left( 2 \right)\] ta được tứ giác \[AMBO\] nội tiếp đường tròn đường kính \[OM.\]

Câu hỏi cùng đoạn

Câu 2:

b) Chứng minh \(OI \cdot OM = {R^2}\).

Xem lời giải

verified Lời giải của GV VietJack

b) Ta có tứ giác \[AMBO\] nội tiếp đường tròn đường kính \[OM.\]

Suy ra \[AB\] là dây cung của đường tròn đường kính \[OM.\]

Do đó \(OM \bot AB\).

Xét \(\Delta OAM\) vuông tại \[A\]\[AI\] là đường cao.

Xét \(\Delta OAM\)\[\Delta OIA\] là hai tam giác vuông có góc \[\widehat O\] chung.

Do đó ΔOAM  ΔOIA  g.g

Suy ra \[\frac{{OA}}{{OI}} = \frac{{OM}}{{OA}}\] hay \[O{A^2} = OM.OI\]\[OA = R\] nên \(OI \cdot OM = {R^2}\).

Câu 3:

c) Chứng minh ba điểm \(O,\,\,H,\,\,M\) thẳng hàng.

Xem lời giải

verified Lời giải của GV VietJack

c) Áp dụng định lí Pythagore trong tam giác vuông \[IOA\], ta có

\[I{A^2} = O{A^2} - O{I^2} = OI \cdot OM - O{I^2} = OI\left( {OM - OI} \right) = OI \cdot IM\].

Ta có \(OA \bot AM\) (do \[AM\] là tiếp tuyến của \(\left( O \right)\) và \(BD \bot MA\) (gt), suy ra \[OA\,{\rm{//}}\,BD\].

Chứng minh tương tự, ta được \[OB\,\,{\rm{//}}\,AC\].

Do đó tứ giác \[OAHB\] là hình bình hành.

Mà \(OA = OB = R\) nên tứ giác \[OAHB\] là hình thoi, suy ra \(OH \bot AB\).

Mà \(OM \bot AB\), do đó \[OM \equiv OH\].

Vậy ba điểm \[O,\,\,H,M\] thẳng hàng.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

a) Lập bảng tần số ghép nhóm tương ứng.

Xem đáp án » 12/04/2025 72

Câu 2:

a) Tính thể tích của khối sắt ban đầu (Hình a).

Xem đáp án » 12/04/2025 52

Câu 3:

a) Mô tả không gian mẫu của phép thử.

Xem đáp án » 12/04/2025 31

Câu 4:

a) Tính \(f\left( 0 \right);f\left( 3 \right)\).

Xem đáp án » 12/04/2025 25

Câu 5:

Giải bài toán sau bằng cách lập phương trình:

     Quãng đường \({\rm{AB}}\) dài \(90{\rm{\;km}}\), có hai ô tô khởi hành cùng một lúc. Ô tô thứ nhất đi từ A đến \({\rm{B}}\) ô tô thứ hai đi từ \({\rm{B}}\) đến \({\rm{A}}\). Sau \[1\] giờ hai xe gặp nhau và tiếp tục đi. Xe ô tô thứ hai tới A trước xe thứ nhất tới B là \[27\] phút. Tính vận tốc của mỗi xe.

Xem đáp án » 12/04/2025 19

Câu 6:

Cho vòng quay mặt trời gồm 8 cabin như hình vẽ. Hỏi để cabin A di chuyển đến vị trí cao nhất thì vòng quay phải quay thuận chiều kim đồng hồ quanh tâm bao nhiêu độ?

Hỏi để cabin A di chuyển đến vị trí cao nhất thì vòng quay phải quay thuận chiều kim đồng hồ quanh tâm bao nhiêu độ? (ảnh 1)

Xem đáp án » 12/04/2025 19
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua