Câu hỏi:

22/04/2025 17

Câu 26-28. (1,5 điểm) Cho hình chữ nhật \(ABCD\). Kẻ \(AH \bot BD\) tại \(H.\)

a) Chứng minh rằng ΔABDΔHBA .

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a (ảnh 1)

a) Vì \(ABCD\) là hình chữ nhật nên \(\widehat {BAD} = 90^\circ \).

\(AH \bot BD\) tại \(H\) nên \(\widehat {BAD} = \widehat {AHB} = 90^\circ \).

Xét \(\Delta ABD\)\(\Delta HBA\), có:

\(\widehat {BAD} = \widehat {AHB} = 90^\circ \) (cmt)

\(\widehat {ABD} = \widehat {ABH}\)

Do đó, ΔABDΔHBA (g.g)

Câu hỏi cùng đoạn

Câu 2:

b) Chứng minh rằng \(B{C^2} = BD.DH.\)

Xem lời giải

verified Lời giải của GV VietJack

b) Xét \(\Delta ABD\)\(\Delta HAD\) có:

\(\widehat {BAD} = \widehat {AHD} = 90^\circ \)

\(\widehat {BDA} = \widehat {ADH}\)

Do đó, ΔABDΔHAD (g.g)

Suy ra \(\frac{{AD}}{{DH}} = \frac{{BD}}{{AD}}\) hay \[A{D^2} = BD.DH\].

\[AD = BC\] (do \[ABCD\] là hình chữ nhật)

Suy ra \[B{C^2} = BD.DH\] (đpcm)

Câu 3:

c) Kẻ \(DE\) là đường phân giác của tam giác \(ABD\). Gọi \(I\) là giao điểm của \(DE\)\(AH\). Chứng minh \(\Delta AIE\) cân và \(A{E^2} = IH.EB.\)

Xem lời giải

verified Lời giải của GV VietJack

c) Vì \(DE\) là đường phân giác của tam giác \(ABD\) nên \(\widehat {ADE} = \widehat {EDB}\).

Ta có:  (cmt) nên \(\widehat {DBA} = \widehat {HAD}\) (hai góc tương ứng)

Suy ra \(\widehat {DBA} + \widehat {EDB} = \widehat {HAD} + \widehat {EDA}\) (1)

Xét \(\Delta AID\)\(\widehat {AIE} = \widehat {IAD} + \widehat {IDA} = \widehat {HAD} + \widehat {EDA}\) (tính chất góc ngoài) (2)

Xét \(\Delta DEB\)\(\widehat {AEI} = \widehat {EBD} + \widehat {BDE}\) (tính chất góc ngoài ) (3)

Từ (1), (2), (3) suy ra \(\widehat {AIE} = \widehat {AEI}\).

Do đó, \(\Delta AIE\) cân tại \(A\).

Suy ra \(AE = AI\).

Xét \(\Delta ADH\), có \(DI\) là đường phân giác nên \(\frac{{IH}}{{IA}} = \frac{{DH}}{{DA}}.\)

\(AE = AI\) (cmt) (4)

Suy ra \(\frac{{AD}}{{DH}} = \frac{{BD}}{{AD}}\), suy ra \(\frac{{AD}}{{BD}} = \frac{{DH}}{{DA}}\) (5)

Từ (4) và (5) suy ra \(\frac{{IH}}{{EA}} = \frac{{AD}}{{BD}}\) \(\left( * \right)\)

Xét \(\Delta ADB\)\(DE\) là đường phân giác nên \(\frac{{AE}}{{EB}} = \frac{{AD}}{{BD}}\)\(\left( {**} \right)\)

Từ (*) và (**) suy ra \(\frac{{IH}}{{EA}} = \frac{{AE}}{{EB}}\) hay \(A{E^2} = IH.EB\) (đpcm).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

a) Hai đường thẳng \(\left( {{d_1}} \right),\left( {{d_2}} \right)\) cắt nhau.

Xem đáp án » 22/04/2025 20

Câu 2:

a) Có \(20\) kết quả thuận lợi cho biến cố “Số xuất hiện trên thẻ được rút ra là số lẻ”.

Xem đáp án » 22/04/2025 19

Câu 3:

Phần 3. (2,0 điểm) Câu hỏi trắc nghiệm trả lời ngắn

Trong các câu từ 15 đến 18, hãy viết câu trả lời/ đáp án vào bài làm mà không cần trình bày lời giải chi tiết.

Xác định hệ số góc của đường thẳng đi qua hai điểm \(A\left( { - 4;0} \right)\)\(B\left( {0;5} \right)\).

(Kết quả ghi dưới dạng số thập phân)

Xem đáp án » 22/04/2025 12

Câu 4:

Phần 1. (3,0 điểm) Câu trắc nghiệm nhiều phương án lựa chọn

Trong mỗi câu hỏi từ câu 1 đến câu 12, hãy viết chữ cái in hoa đứng trước phương án đúng duy nhất vào bài làm.

Biểu thức nào sau đây không phải là phân thức đại số?

Xem đáp án » 22/04/2025 10

Câu 5:

\(x = - 2\) là nghiệm của phương trình:

Xem đáp án » 22/04/2025 10

Câu 6:

Đường thẳng \(y = 1\) luôn cắt trục tung tại điểm

Xem đáp án » 22/04/2025 10
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua