Câu hỏi:
22/04/2025 149Câu 26-28. (1,5 điểm) Cho hình chữ nhật \(ABCD\). Kẻ \(AH \bot BD\) tại \(H.\)
a) Chứng minh rằng .
Quảng cáo
Trả lời:
a) Vì \(ABCD\) là hình chữ nhật nên \(\widehat {BAD} = 90^\circ \).
Vì \(AH \bot BD\) tại \(H\) nên \(\widehat {BAD} = \widehat {AHB} = 90^\circ \).
Xét \(\Delta ABD\) và \(\Delta HBA\), có:
\(\widehat {BAD} = \widehat {AHB} = 90^\circ \) (cmt)
\(\widehat {ABD} = \widehat {ABH}\)
Do đó, (g.g)Câu hỏi cùng đoạn
Câu 2:
b) Chứng minh rằng \(B{C^2} = BD.DH.\)
Lời giải của GV VietJack
b) Xét \(\Delta ABD\) và \(\Delta HAD\) có:
\(\widehat {BAD} = \widehat {AHD} = 90^\circ \)
\(\widehat {BDA} = \widehat {ADH}\)
Do đó, (g.g)Suy ra \(\frac{{AD}}{{DH}} = \frac{{BD}}{{AD}}\) hay \[A{D^2} = BD.DH\].
Mà \[AD = BC\] (do \[ABCD\] là hình chữ nhật)
Suy ra \[B{C^2} = BD.DH\] (đpcm)
Câu 3:
c) Kẻ \(DE\) là đường phân giác của tam giác \(ABD\). Gọi \(I\) là giao điểm của \(DE\) và \(AH\). Chứng minh \(\Delta AIE\) cân và \(A{E^2} = IH.EB.\)
Lời giải của GV VietJack
c) Vì \(DE\) là đường phân giác của tam giác \(ABD\) nên \(\widehat {ADE} = \widehat {EDB}\).
Ta có: (cmt) nên \(\widehat {DBA} = \widehat {HAD}\) (hai góc tương ứng)
Suy ra \(\widehat {DBA} + \widehat {EDB} = \widehat {HAD} + \widehat {EDA}\) (1)
Xét \(\Delta AID\) có \(\widehat {AIE} = \widehat {IAD} + \widehat {IDA} = \widehat {HAD} + \widehat {EDA}\) (tính chất góc ngoài) (2)
Xét \(\Delta DEB\) có \(\widehat {AEI} = \widehat {EBD} + \widehat {BDE}\) (tính chất góc ngoài ) (3)
Từ (1), (2), (3) suy ra \(\widehat {AIE} = \widehat {AEI}\).
Do đó, \(\Delta AIE\) cân tại \(A\).
Suy ra \(AE = AI\).
Xét \(\Delta ADH\), có \(DI\) là đường phân giác nên \(\frac{{IH}}{{IA}} = \frac{{DH}}{{DA}}.\)
Mà \(AE = AI\) (cmt) (4)
Suy ra \(\frac{{AD}}{{DH}} = \frac{{BD}}{{AD}}\), suy ra \(\frac{{AD}}{{BD}} = \frac{{DH}}{{DA}}\) (5)
Từ (4) và (5) suy ra \(\frac{{IH}}{{EA}} = \frac{{AD}}{{BD}}\) \(\left( * \right)\)
Xét \(\Delta ADB\) có \(DE\) là đường phân giác nên \(\frac{{AE}}{{EB}} = \frac{{AD}}{{BD}}\)\(\left( {**} \right)\)
Từ (*) và (**) suy ra \(\frac{{IH}}{{EA}} = \frac{{AE}}{{EB}}\) hay \(A{E^2} = IH.EB\) (đpcm).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Phân thức đại số là một biểu thức có dạng \(\frac{A}{B}\) trong đó \(A,B\) là hai đa thức và đa thức \(B \ne 0\).
Do đó, \(\frac{{2x + 1}}{{x - 3}}\) là một phân thức đại số.
Lời giải
Hướng dẫn giải
Đáp án: \(9\)
Áp dụng định lí Pythagore vào tam giác \(ABC\), ta có:
\(A{B^2} + A{C^2} = B{C^2}\) hay \({6^2} + {6^2} = B{C^2}\) nên \(B{C^2} = 72\), suy ra \(BC = \sqrt {72} \).
Áp dụng định lí Pythagore vào tam giác \(BCD\), ta có:
\(B{C^2} + C{D^2} = B{D^2}\) hay \({\left( {\sqrt {72} } \right)^2} + {3^2} = {x^2}\) nên \({x^2} = 81\), suy ra \(x = 9\).
Vậy \(x = 9\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
15 câu Trắc nghiệm Toán 8 Kết nối tri thức Bài 1: Đơn thức có đáp án
Bộ 10 đề thi cuối kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
15 câu Trắc nghiệm Toán 8 Chân trời sáng tạo Bài 1: Đơn thức và đa thức nhiều biến có đáp án
Đề kiểm tra cuối kỳ 2 Toán 8 có đáp án ( Mới nhất)_ đề 25
15 câu Trắc nghiệm Toán 8 Cánh diều Bài 1: Đơn thức nhiều biến. Đa thức nhiều biến có đáp án
Bộ 10 đề thi giữa kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
Đề kiểm tra cuối kỳ 2 Toán 8 có đáp án ( Mới nhất)_ đề 1
Đề cuối kì 2 Toán 8 Cánh diều cấu trúc mới có đáp án- Đề 2
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận