Câu hỏi:
22/04/2025 374
Câu 26-28. (1,5 điểm) Cho tam giác \[ABC{\rm{ }}\left( {AB < AC} \right)\] vuông tại \[A\] có đường cao \[AH.\]
a) Chứng minh rằng
Câu 26-28. (1,5 điểm) Cho tam giác \[ABC{\rm{ }}\left( {AB < AC} \right)\] vuông tại \[A\] có đường cao \[AH.\]
a) Chứng minh rằng
Quảng cáo
Trả lời:
a) Xét \(\Delta ABC\) và \(\Delta HAC\), có: \(\widehat {BAC} = \widehat {AHC} = 90^\circ \) (gt) và \(\widehat {ACB} = \widehat {HCA}\) (gt)
Do đó, (G.G)Câu hỏi cùng đoạn
Câu 2:
b) Lấy điểm \(I\) thuộc đoạn \(AH\) (\(I\)không trùng với \[A,H\]). Qua \[B\] kẻ đường thẳng vuông góc với \[CI\] tại \[K\]. Chứng minh rằng \[CH.CB = CI.CK.\]
b) Lấy điểm \(I\) thuộc đoạn \(AH\) (\(I\)không trùng với \[A,H\]). Qua \[B\] kẻ đường thẳng vuông góc với \[CI\] tại \[K\]. Chứng minh rằng \[CH.CB = CI.CK.\]
Lời giải của GV VietJack
b) Xét \(\Delta CHI\) và \(\Delta CKB\), ta có:
\(\widehat {CHI} = \widehat {CKB} = 90^\circ \) (gt)
\(\widehat {HCI} = \widehat {KCB}\)
Do đó, (g.g)Suy ra \(\frac{{CH}}{{CK}} = \frac{{CI}}{{CB}}\).
Suy ra \(CH.CB = CI.CK\).
Câu 3:
c) Tia \[BK\] cắt tia \[HA\] tại điểm \[D.\] Chứng minh \[CH.CB + DK.DB = C{D^2}.\]
c) Tia \[BK\] cắt tia \[HA\] tại điểm \[D.\] Chứng minh \[CH.CB + DK.DB = C{D^2}.\]
Lời giải của GV VietJack
c) Gọi \(M\) là giao điểm của \(BI\) và \(DC\). Vì \(I\) là trực tâm của \(\Delta BDC\) nên \(BI \bot DC\).
Xét \(\Delta CMI\) và \(\Delta CDK\), ta có: \(\widehat {CMI} = \widehat {CKD} = 90^\circ \) (gt) và \(\widehat {MCI} = \widehat {DCK}\) (gt)
Suy ra (g.g)Suy ra \(\frac{{CM}}{{CK}} = \frac{{CI}}{{CD}}\) nên \(CD.CM = CI.CK\).
Mà từ phần b) ta có: \(CH.CB = CI.CK\) suy ra \(CH.CB = CI.CK = CD.CM.\)
Chứng minh được (g.g) suy ra \(DK.DB = DM.DC\).
Do đó, \(CH.CB + DK.DB = CM.CD + DM.DC = DC\left( {MD + MC} \right) = D{C^2}\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đ
a) Nhận thấy hệ số góc của hai đường thẳng khác nhau \(\left( {4 \ne - 3} \right)\) nên hai đường thẳng luôn cắt nhau với mọi \(m.\)
Lời giải
Hướng dẫn giải
Đáp án: \(1\)
Gọi đường thẳng cần tìm là \(\left( d \right):y = ax + b\).
Ta có: \(A\left( {1;2} \right) \in \left( d \right)\) nên \(a + b = 2\) suy ra \(b = 2 - a\) (1)
\(B\left( {3;4} \right) \in \left( d \right)\) nên \(3a + b = 4\) suy ra \(b = 4 - 3a\) (2)
Từ (1) và (2) ta có: \(2 - a = 4 - 3a\) suy ra \(2a = 2\) nên \(a = 1\).
Vậy hệ số góc của đường thẳng đó là \(1.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.