Câu hỏi:

25/04/2025 556 Lưu

Dựa vào thông tin dưới đây để trả lời các câu từ 72 đến 74

Cho hàm số bậc ba \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đồ thị như hình vẽ dưới đây.

Giá trị lớn nhất của hàm số \(f\left( x \right)\) trên đoạn \(\left[ {0;3} \right]\) bằng    

A. 2,5.                      
B. 3.                         
C. 1. 
D. 0.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Điểm cao nhất của đồ thị hàm số \(f\left( x \right)\) trên đoạn \(\left[ {0;3} \right]\) là có tung độ là \(y = 2,5\).

Vậy max0  ;3fx=2,5 . Chọn A.

Câu hỏi cùng đoạn

Câu 2:

Số nghiệm thuộc khoảng \(\left( {0\,;\,2\pi } \right)\) của phương trình \(2f\left( {\sin x} \right) - 5 = 0\) bằng    

A. 0.                         
B. 2.                         
C. 1. 
D. 3.

Xem lời giải

verified Giải bởi Vietjack

Dựa vào đồ thị hàm số \(f\left( x \right)\), ta có \(f\left( {\sin x} \right) = 2,5 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{\sin x = 1}\\{\sin x = a > 3\left( L \right)}\end{array}} \right.\).

Suy ra \(\sin x = 1 \Leftrightarrow x = \frac{\pi }{2} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\).

Vậy có 1 nghiệm \(x = \frac{\pi }{2}\) thuộc khoảng \(\left( {0;2\pi } \right)\). Chọn C.

Câu 3:

Số giá trị nguyên của \(m\) thuộc đoạn \(\left[ {0;2025} \right]\) để hàm số \(g\left( x \right) = f\left( {{x^3} - 3{x^2} + m} \right)\) đồng biến trên khoảng \(\left( {2; + \infty } \right)\) là:     

A. 2019.                   
B. 2021.                   
C. 2023.                           
D. 2025.

Xem lời giải

verified Giải bởi Vietjack

Ta có \(g'\left( x \right) = \left( {3{x^2} - 6x} \right)f'\left( {{x^3} - 3x + m} \right)\).

Với mọi \(x \in \left( {2; + \infty } \right)\) ta có \(3{x^2} - 6x > 0\) nên để hàm số \(g\left( x \right) = f\left( {{x^3} - 3{x^2} + m} \right)\) đồng biến trên khoảng \(\left( {2; + \infty } \right) \Leftrightarrow f'\left( {{x^3} - 3{x^2} + m} \right) \ge 0,\forall x \in \left( {2; + \infty } \right)\).

Dựa vào đồ thị ta có hàm số \(y = f\left( x \right)\) đồng biến trên các khoảng \(\left( { - \infty ;1} \right)\)\(\left( {3; + \infty } \right)\) nên \(f'\left( x \right) \ge 0\) với \(x \in \left( { - \infty ;1\left] \cup \right[3; + \infty } \right)\).

Do đó: \(f'\left( {{x^3} - 3{x^2} + m} \right) \ge 0,\forall x \in \left( {2; + \infty } \right)\)\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{{x^3} - 3{x^2} + m \le 1,\,\,\forall x \in \left( {2; + \infty } \right)}\\{{x^3} - 3{x^2} + m \ge 3,\,\,\forall x \in \left( {2; + \infty } \right)}\end{array}} \right.\)

\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{m \le - {x^3} + 3{x^2} + 1,\,\,\forall x \in \left( {2; + \infty } \right)}\\{m \ge - {x^3} + 3{x^2} + 3,\,\,\forall x \in \left( {2; + \infty } \right)}\end{array}} \right.\).

Nhận thấy nên trường hợp \(m \le - {x^3} + 3{x^2} + 1,\forall x \in \left( {2; + \infty } \right)\) không xảy ra.

Trường hợp: \(m \ge - {x^3} + 3{x^2} + 3,\forall x \in \left( {2; + \infty } \right)\). Ta có hàm số \(h\left( x \right) = - {x^3} + 3{x^2} + 3\) liên tục trên \(\left[ {2; + \infty } \right)\) \(h'\left( x \right) = - 3{x^2} + 6x < 0,\forall x \in \left( {2; + \infty } \right)\) nên \(h\left( x \right)\) nghịch biến trên \(\left[ {2; + \infty } \right)\) suy ra \(\mathop {{\rm{max}}}\limits_{\left[ {2\,;\, + \infty } \right)} h\left( x \right) = h\left( 2 \right)\).

Do đó mx3+3x2+3,x2;+mmax2;+hx=h2=2m7.

Vậy có 2019 số nguyên \(m\) thỏa mãn yêu cầu bài toán. Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi biến cố X: “Phác đồ A chữa khỏi bệnh” và biến cố Y: “Phác đồ A gây tác dụng phụ nghiêm trọng”. Ta có \(P\left( X \right) = 0,6\)\(P\left( Y \right) = 0,05\).

Gọi biến cố M: “Phác đồ B chữa khỏi bệnh” và biến cố N: “phác đồ B gây tác dụng phụ nghiêm trọng”. Ta có \(P\left( M \right) = 0,7\)\(P\left( N \right) = 0,1\).

Xác suất sử dụng phác đồ A gây tác dụng phụ nghiêm trọng là \(P\left( Y \right) = 0,05\) và xác suất để chọn được phác đồ A là \(P\left( A \right) = 0,5\) nên xác suất chọn được phác đồ A và bệnh nhân bị tác dụng phụ nghiêm trọng là \(0,5 \cdot 0,05 = 0,025\).

Xác suất sử dụng phác đồ B gây tác dụng phụ nghiêm trọng là \(P\left( N \right) = 0,1\) và xác suất để chọn được phác đồ B là \(P\left( B \right) = 0,5\) nên xác suất chọn được phác đồ B và bệnh nhân bị tác dụng phụ nghiêm trọng là \(0,5 \cdot 0,1 = 0,05\).

Gọi biến C: “Bệnh nhân gặp tác dụng phụ nghiêm trọng” thì \(P\left( C \right) = 0,025 + 0,05 = 0,075\).

Chọn B.

Lời giải

Gọi D là biến cố “bệnh nhân được chữa khỏi bệnh”.

Suy ra \(P\left( D \right) = \frac{1}{2}\left( {P\left( X \right) + P\left( M \right)} \right) = 0,65\).

Gọi \(E\) là biến cố “bệnh nhân không bị tác dụng phụ nghiêm trọng”.

Suy ra \(P\left( E \right) = \frac{1}{2}\left( {P\left( {\overline Y } \right) + P\left( {\overline N } \right)} \right)\)\( = \frac{1}{2}\left( {0,95 + 0,9} \right) = 0,925\).

Vậy xác suất để bệnh nhân chữa khỏi bệnh và không bị tác dụng phụ nghiêm trọng là:

\(P\left( {D \cap E} \right) = P\left( D \right) \cdot P\left( E \right) = 0,60125\). Chọn D.

Câu 4

A. \(60\% \).            
B. \(70\% \).            
C. \(75\% \). 
D. \(80\% \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. How cultural diversity leads to social conflicts.
B. The causes of cultural diversity in modern society.
C. The impact of cultural diversity on societies.
D. The rise of cultural diversity in a globalized world.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. Giảm khí thải nhà kính.                              
B. Khả năng rủi ro và gặp sự cố khá cao.    
C. Là nguồn cung cấp điện ổn định, lâu dài.       
D. Có thể gây ô nhiễm môi trường.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP