Câu hỏi:
26/04/2025 14Quảng cáo
Trả lời:
Ta có \(\mathop {\lim }\limits_{x \to + \infty } \frac{{\sqrt {{x^2} + 2x + 2} }}{x} = \mathop {\lim }\limits_{x \to + \infty } \frac{{\sqrt {1 + \frac{2}{x} + \frac{2}{{{x^2}}}} }}{1} = 1\).
\[\mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} + 2x + 2} - x} \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{{2x + 2}}{{\sqrt {{x^2} + 2x + 2} + x}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{2 + \frac{2}{x}}}{{\sqrt {1 + \frac{2}{x} + \frac{2}{{{x^2}}}} + 1}} = 1\].
Ta có \(\mathop {\lim }\limits_{x \to - \infty } \frac{{\sqrt {{x^2} + 2x + 2} }}{x} = \mathop {\lim }\limits_{x \to - \infty } \frac{{ - \sqrt {1 + \frac{2}{x} + \frac{2}{{{x^2}}}} }}{1} = - 1\).
\[\mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt {{x^2} + 2x + 2} + x} \right) = \mathop {\lim }\limits_{x \to - \infty } \frac{{2x + 2}}{{\sqrt {{x^2} + 2x + 2} - x}} = \mathop {\lim }\limits_{x \to - \infty } \frac{{2 + \frac{2}{x}}}{{ - \sqrt {1 + \frac{2}{x} + \frac{2}{{{x^2}}}} - 1}} = - 1\].
Vậy đồ thị hàm số có hai tiệm cận xiên là: \(y = x + 1\) và \(y = - x - 1\). Chọn C.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 3:
Câu 5:
Đề thi Đánh giá năng lực ĐHQG Hồ Chí Minh năm 2025 có đáp án (Đề 1)
(2025) Đề thi thử Đánh giá năng lực ĐHQG Hồ Chí Minh năm 2025 có đáp án (Đề 1)
ĐGNL ĐHQG TP.HCM - Sử dụng ngôn ngữ Tiếng Việt - Chính tả
Đề thi Đánh giá năng lực ĐHQG Hồ Chí Minh năm 2025 có đáp án (Đề 2)
Đề thi Đánh giá năng lực ĐHQG Hồ Chí Minh năm 2025 có đáp án (Đề 3)
(2025) Đề thi thử Đánh giá năng lực ĐHQG Hồ Chí Minh năm 2025 có đáp án (Đề 2)
(2025) Đề minh họa Đánh giá năng lực ĐHQG Hồ Chí Minh năm 2025 có đáp án ( Đề 8)
Đề thi Đánh giá năng lực ĐHQG Hồ Chí Minh năm 2025 có đáp án (Đề 4)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận