Câu hỏi:

29/05/2025 45

Cho hình chóp \(S.ABCD\) đáy \(ABCD\) là hình bình hành. Gọi \(I,J\) lần lượt là trọng tâm của tam giác \(SAB\) và \(SCD;E,F\) lần lượt là trung điểm của \(AB\) và \(CD\). Khi đó:

a) \(\frac{{SJ}}{{SF}} = \frac{2}{3}\).

b) \(IJ//(ABCD)\).

b) \(BC\) song song với mặt phẳng \((SAD),(SEF)\) .

d) \(BC\) cắt mặt phẳng \((AIJ)\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) b) Do \(I,J\) lần lượt là trọng tâm của tam giác \(SAB\)\(SCD\) nên

\(\frac{{SI}}{{SE}} = \frac{{SJ}}{{SF}} = \frac{2}{3} \Rightarrow IJ//EF{\rm{ m\`a }}EF \subset (ABCD) \Rightarrow IJ//(ABCD){\rm{. }}\)

c (ảnh 1)

c) d) Vì \(BC//AD,AD \subset (SAD) \Rightarrow BC//(SAD)\).

\(EF\) là đường trung bình của hình bình hành \(ABCD\) nên

\(BC//EF,EF \subset (SEF) \Rightarrow BC//(SEF){\rm{. }}\)Ta có: \(IJ//EF,EF//BC \Rightarrow BC//IJ\)\(IJ \subset (AIJ) \Rightarrow BC//(AIJ)\).

Đáp án: a) Đúng;   b) Đúng;    c) Đúng;    d) Sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

c (ảnh 1)

Vì SD Ì (SCD) và OM // (SCD) nên OM Ç SD = Æ hay OM // SD.

Mà O là trung điểm của BD nên M là trung điểm của SB hay \(\frac{{SM}}{{MB}} = 1\).

Trả lời: 1.

Câu 2

Lời giải

A

\(\left. \begin{array}{l}d//\left( \alpha \right)\\d \subset \left( \beta \right)\\\left( \alpha \right) \cap \left( \beta \right) = d'\end{array} \right\} \Rightarrow d//d'\).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP