Câu hỏi:

29/05/2025 37

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi G là trọng tâm của tam giác SAD và M là điểm thuộc cạnh BC sao cho GM song song với mặt phẳng (SCD). Khi đó tỉ số diện tích của hai tam giác MAB và MAC bằng bao nhiêu?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Khi đó tỉ số diện tích của hai tam giác MAB và MAC bằng bao nhiêu? (ảnh 1)

Gọi E là trung điểm của SD, F là giao điểm của AM và CD trong mặt phẳng (ABCD).

Ta có \(\left\{ \begin{array}{l}GM \subset \left( {AEF} \right)\\GM//\left( {SCD} \right)\\\left( {AEF} \right) \cap \left( {SCD} \right) = EF\end{array} \right.\) Þ GM // EF Þ \(\frac{{FM}}{{FA}} = \frac{{EG}}{{EA}} = \frac{1}{3}\).

Theo hệ quả Talet, ta có \(\frac{{MC}}{{AD}} = \frac{{FM}}{{FA}} = \frac{1}{3} \Rightarrow MC = \frac{1}{3}AD = \frac{1}{3}BC \Rightarrow \frac{{MB}}{{MC}} = 2\).

Do DMAB và DMAC có chung đường cao kẻ từ A.

Do đó \(\frac{{{S_{\Delta MAB}}}}{{{S_{\Delta MAC}}}} = \frac{{MB}}{{MC}} = 2\).

Trả lời: 2.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

c (ảnh 1)

Vì SD Ì (SCD) và OM // (SCD) nên OM Ç SD = Æ hay OM // SD.

Mà O là trung điểm của BD nên M là trung điểm của SB hay \(\frac{{SM}}{{MB}} = 1\).

Trả lời: 1.

Câu 2

Lời giải

A

\(\left. \begin{array}{l}d//\left( \alpha \right)\\d \subset \left( \beta \right)\\\left( \alpha \right) \cap \left( \beta \right) = d'\end{array} \right\} \Rightarrow d//d'\).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP