(0,5 điểm) Cho biểu thức \(A = 2 + {21^{23}} + {25^{125}}.\) Chứng minh rằng \(A\) là hợp số.
(0,5 điểm) Cho biểu thức \(A = 2 + {21^{23}} + {25^{125}}.\) Chứng minh rằng \(A\) là hợp số.
Quảng cáo
Trả lời:

Hướng dẫn giải
Xét biểu thức \(A = 2 + {21^{23}} + {25^{125}}.\)
Ta có \({21^{23}}\) có chữ số tận cùng là 1 (vì \[{\left( {\overline {...1} } \right)^n} = \overline {...1} ).\]
\({25^{125}}\) có chữ số tận cùng là 5 (vì \[{\left( {\overline {...5} } \right)^n} = \overline {...5} ).\]
Khi đó, \(A = 2 + {21^{23}} + {25^{125}}\) có chữ số tận cùng là: \(2 + 1 + 5 = 8\) (có dạng \(\overline {...8} )\) nên \(A\,\, \vdots \,\,2.\)
Mà \(A = 2 + {21^{23}} + {25^{125}} > 1\) và có nhiều hơn 2 ước nên \(A\) là hợp số.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp số: 6.
Ta có:
\(32 < {2^n} < 128\)
\({2^5} < {2^n} < {2^7}\)
\(5 < n < 7\)
Vì \(n \in \mathbb{N}\) nên giá trị duy nhất của \(n\) thỏa mãn là: \(n = 6.\)
Vậy \(n = 6.\)
Lời giải
Hướng dẫn giải
1) a) \({2^9}:{2^2} + {5^4}:{5^3} \cdot {2^4} - 3 \cdot {2^5}\) \( = {2^7} + {5^2} \cdot {2^4} - 3 \cdot {2^5}\) \( = {2^5} \cdot \left( {{2^2} - 3} \right) + {5^2} \cdot {2^4}\) \( = 32 \cdot 1 + 400 = 432.\) |
b) \[1\,\,754:17 - 74:17 + 20:17\] \[ = \left( {1\,\,754 - 74 + 20} \right):17\] \[ = 1\,\,700:17\] \[ = 100.\] |
2) \({5^{x + 1}} - {5^x} = 2 \cdot {2^x} + 8 \cdot {2^x}\)
\({5^x} \cdot 5 - {5^x} = 2 \cdot {2^x} + 8 \cdot {2^x}\)
\({5^x} \cdot \left( {5 - 1} \right) = {2^x} \cdot \left( {2 + 8} \right)\)
\({5^x} \cdot 4 = {2^x} \cdot 10\)
\({2^2} \cdot {5^x} = {2^{x + 1}} \cdot 5\)
\(\frac{{{2^2} \cdot {5^x}}}{{{2^2} \cdot 5}} = \frac{{{2^{x + 1}} \cdot 5}}{{{2^2} \cdot 5}}\)
\({5^{x - 1}} = {2^{x - 1}}\)
Suy ra \(x - 1 = 0\)
\(x = 1.\)
Vậy \(x = 1.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.