Câu hỏi:

10/06/2025 47 Lưu

Khẳng định nào sau đây là đúng?

A. Diện tích hình vuông bằng bình phương độ dài cạnh.          
B. Chu vi hình chữ nhật bằng hai lần chiều dài nhân chiều rộng.          
C. Diện tích hình bình hành bằng nửa tích độ dài cạnh đáy nhân với chiều cao tương ứng.          
D. Diện tích hình thoi bằng tích độ dài hai đường chéo.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: A

Diện tích hình vuông bằng bình phương độ dài cạnh. Do đó phương án A là khẳng định đúng.

Chu vi hình chữ nhật bằng hai lần của tổng chiều dài và chiều rộng. Do đó phương án B là khẳng định sai.

Diện tích hình bình hành bằng tích độ dài cạnh đáy nhân với chiều cao tương ứng. Do đó phương án C là khẳng định sai.

Diện tích hình thoi bằng nửa tích độ dài hai đường chéo. Do đó phương án D là khẳng định sai.

Vậy ta chọn phương án A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Ô thứ nhất bỏ vào 1 hạt.

Ô thứ hai bỏ vào \(2 = {2^1}\) hạt.

Ô thứ ba bỏ vào \(4 = {2^2}\) hạt.

Ô thứ tư bỏ vào \(8 = {2^3}\) hạt và cứ như vậy, ở ô tiếp theo xếp số hạt gạo gấp đôi ô trước đó nên ô thứ 64 bỏ vào \({2^{63}}\) hạt.

Khi đó, tổng số hạt gạo được Minh xếp lên bàn cờ vua là:

\(S = 1 + {2^1} + {2^2} + {2^3} + ... + {2^{63}}\).

Ta có: \(2S = {2^1} + {2^2} + {2^3} + {2^4} + ... + {2^{64}}\).

Suy ra \(2S - S = \left( {{2^1} + {2^2} + {2^3} + {2^4} + ... + {2^{64}}} \right) - \left( {1 + {2^1} + {2^2} + {2^3} + ... + {2^{63}}} \right)\)

Do đó, \(S = {2^{64}} - 1.\)

Vậy tổng số hạt gạo được Minh xếp lên bàn cờ vua là: \({2^{64}} - 1\) hạt.

Ta có: \(S = \left( {1 + {2^1} + {2^2} + {2^3}} \right) + \left( {{2^4} + {2^5} + {2^6} + {2^7}} \right) + ... + \left( {{2^{60}} + {2^{61}} + {2^{62}} + {2^{63}}} \right)\) (gồm có 16 nhóm)

\[S = \left( {1 + {2^1} + {2^2} + {2^3}} \right) + {2^4} \cdot \left( {1 + {2^1} + {2^2} + {2^3}} \right) + ... + {2^{60}} \cdot \left( {1 + {2^1} + {2^2} + {2^3}} \right)\]

\[S = \left( {1 + {2^1} + {2^2} + {2^3}} \right) \cdot \left( {1 + {2^4} + ... + {2^{60}}} \right)\]

\[S = \left( {1 + 2 + 4 + 8} \right) \cdot \left( {1 + {2^4} + ... + {2^{60}}} \right)\]

\[S = 15 \cdot \left( {1 + {2^4} + ... + {2^{60}}} \right)\,\,\, \vdots \,\,\,15.\]

Vậy tổng số hạt gạo được Minh xếp lên bàn cờ vua là một số chia hết cho 15.

Lời giải

1) a) \(\left[ {\left( {{5^2} \cdot {2^3} - {7^2} \cdot 2} \right):2} \right] \cdot 6 - {3^2} \cdot 17\)

\( = \left[ {\left( {{5^2} \cdot {2^2} - {7^2}} \right) \cdot 2:2} \right] \cdot 6 - {3^2} \cdot 17\)

\( = \left[ {\left( {25 \cdot 4 - 49} \right) \cdot 1} \right] \cdot 6 - {3^2} \cdot 17\)

\( = \left( {100 - 49} \right) \cdot 6 - 3 \cdot 3 \cdot 17\)

\( = 51 \cdot 6 - 3 \cdot 51\)

\( = 51 \cdot \left( {6 - 3} \right)\)

\( = 51 \cdot 3 = 153.\)

b) \(57 \cdot 34 + 100 \cdot 43 + 57 \cdot 66\)

\( = \left( {57 \cdot 34 + 57 \cdot 66} \right) + 100 \cdot 43\)

\( = 57 \cdot \left( {34 + 66} \right) + 100 \cdot 43\)

\( = 57 \cdot 100 + 100 \cdot 43\)

\( = 100 \cdot \left( {57 + 43} \right)\)

\( = 100 \cdot 100\)

\( = 10\,\,000.\)

Câu 4

A. \[a \in A.\]                
B. \[a \notin A.\]           
C. \[A \in a.\]   
D. \[A \notin a.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \({2^{1000}} - 1\).    
B. \({2^{999}} + 2\).     
C. \({2^{999}} + 1\).    
D. \({2^{1000}} + 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. Số ban đầu có giá trị giảm xuống \(10\) đơn vị.             
B. Số ban đầu có giá trị tăng thêm gấp \(10\) lần.              
C. Không thể thêm vào như thế vì trái với quy tắc viết số La Mã.             
D. Số mới có giá trị trong hệ thập phân là \(24.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. 3.                              
B. 4.                              
C. 5.       
D. 6.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP