Câu hỏi:

18/06/2025 6

Cho \[\Delta ABC\] cân tại \[A,\] trung tuyến \[AM,\;\] \[I\] là trung điểm \[AC.\] Gọi \[N\] là điểm đối xứng của \[M\] qua \[I\].

a) Tứ giác \[AMCN\] là hình gì? Vì sao?

b) Gọi \[E\] là trung điểm \[AM.\] Chứng minh \[E\] là trung điểm \[BN.\]

c) Gọi \(K\) là trung điểm của \(AB.\) Tìm điều kiện của \[\Delta ABC\] để tứ giác \[AKMI\] là hình vuông.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

a) Do \[N\] là điểm đối xứng của \[M\] qua \[I\] nên \(I\) là trung điểm của \(MN.\)

Xét tứ giác \(AMCN\)\(I\) là trung điểm của hai đường chéo \(AC,MN\) nên \(AMCN\) là hình bình hành.

Tam giác \(ABC\) cân tại \(A\) có đường trung tuyến \(AM\) nên \(AM\) là đường cao của tam giác hay \(\widehat {AMC} = 90^\circ \).

Hình bình hành \(AMCN\)\(\widehat {AMC} = 90^\circ \) nên \(AMCN\) là hình chữ nhật.

Cho \[\Delta ABC\] cân tại \[A,\] trung tuyến \[AM,\;\] \[I\] là trung điểm \[AC.\] Gọi \[N\] là điểm đối xứng của \[M\] qua \[I\]. a) Tứ giác \[AMCN\] là hình gì? Vì sao? b) Gọi \[E\] là trung điểm \[AM.\] Chứng minh \[E\] là trung điểm \[BN.\] c) Gọi \(K\) là trung điểm của \(AB.\) Tìm điều kiện của \[\Delta ABC\] để tứ giác \[AKMI\] là hình vuông.  (ảnh 1)

b) Do \(AMCN\) là hình chữ nhật nên \(AN\,{\rm{//}}\,MC\)\(AN = MC.\)

Lại có \(M\) là trung điểm của \(BC\) nên \(MB = MC\)

Do đó \(AN = MB\,\,\left( { = MC} \right)\)

Xét tứ giác \(ANMB\)\(AN\,{\rm{//}}\,MB\) (do \(AN\,{\rm{//}}\,MC)\)\(AN = MB\) nên \(ANMB\) là hình bình hành.

Do đó hai đường chéo \[AM,BN\] cắt nhau tại trung điểm của mỗi đường

Lại có \(E\) là trung điểm của \(AM\) nên \(E\) cũng là trung điểm của \(BN\).

c) Do tam giác \(ABC\) cân tại \(A\) nên \(AB = AC\).

Lại có \(K,I\) lần lượt là trung điểm của \(AB,AC\) nên \(AK = BK = \frac{1}{2}AB\)\(AI = CI = \frac{1}{2}AC\)

Do đó \(AK = AI\,\,\,\left( 1 \right)\)

Mặt khác \(ANCM\) là hình chữ nhật nên \(AC = MN\)\(I\) là trung điểm của \(AC,MN\).

Suy ra \(AI = MI\,\,\,\left( 2 \right)\)

Từ \(\left( 1 \right)\)\(\left( 2 \right)\) suy ra \(AK = MI = AI\).

Ta có: \(ANMB\) là hình bình hành nên \(AB\,{\rm{//}}\,MN\) hay \(AK\,{\rm{//}}\,MI\).

Tứ giác \(AKMI\)\(AK = MI\)\(AK\,{\rm{//}}\,MI\) nên \(AKMI\) là hình bình hành

Lại có \(AK = AI\) nên \(AKMI\) là hình thoi.

Để \(AKMI\) là hình vuông thì cần thêm điều kiện \(\widehat {KAI} = 90^\circ \), khi đó tam giác \(ABC\) vuông tại \(A\).

Vậy để \(AKMI\) là hình vuông thì tam giác \(ABC\) là tam giác vuông cân tại \(A\).

Thật vậy, khi tam giác \(ABC\) là tam giác vuông cân tại \(A\) ta dễ dàng chứng minh được \(AKMI\) là hình thoi có \(\widehat {KAI} = 90^\circ \) nên là hình vuông.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Đa thức nào sau đây không phải là đa thức bậc 4?    

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

• Các đa thức \(4x{y^2}z\); \({x^4} - {3^5}\); \(x{y^2} + xyzt\) có bậc là 4.

Đa thức \({x^4} - \frac{1}{2}x{y^3}z\) có bậc là \(5.\)

Câu 2

Điều kiện của số tự nhiên \(n\) để phép chia \({x^5}{y^n}:{x^n}{y^3}\) là phép chia hết là

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

Để phép chia \({x^5}{y^n}:{x^n}{y^3}\) là phép chia hết thì \(3 \le n \le 5\), suy ra \(n \in \left\{ {3\,;\,\,4\,;\,\,5} \right\}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Đa thức \( - 4{x^2} + 12x - 9\) được viết thành

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Khẳng định nào sau đây là đúng?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay