Câu hỏi:
18/06/2025 9Cho hình bình hành \[ABCD\] có cạnh \(AB = 2AD.\) Gọi \[M,{\rm{ }}N\] lần lượt là trung điểm của \[AB\] và \[CD.\]
a) Chứng minh rằng \(DMBN\) là hình bình hành.
b) Chứng minh rằng \(AN\) là tia phân giác của góc \[DAB.\]
c) Gọi giao điểm của \(AN\) với \[DM\]là \[P,{\rm{ }}CM\] với \[BN\] là \[Q.\] Tìm điều kiện của hình bình hành\[ABCD\] để tứ giác \[PMQN\] là hình vuông.
Quảng cáo
Trả lời:
a) Do \(ABCD\) là hình bình hành nên \(AB = CD\) và \(AB\,{\rm{//}}\,CD\).
Lại có \[M,{\rm{ }}N\] lần lượt là trung điểm của \[AB\] và \[CD\] nên \(AM = BM = \frac{1}{2}AB\) và \(DN = CN = \frac{1}{2}CD.\)
Do đó \(AM = BM = DN = CN\).
Tứ giác \(DMBN\) có \(BM\,{\rm{//}}\,DN\) (do \(AB\,{\rm{//}}\,CD)\) và \(BM = DN\) nên \(DMBN\) là hình bình hành.
b) Xét tứ giác \(AMND\) có \(AM\,{\rm{//}}\,DN\) (do \(AB\,{\rm{//}}\,CD)\) và \(AM = DN\) nên \(AMND\) là hình bình hành
Lại có \(AB = 2AD\) nên \(AD = \frac{1}{2}AB\). Suy ra \(AM = AD\).
Hình bình hành \(AMND\) có \(AM = AD\) nên \(AMND\) là hình thoi.
Suy ra đường chéo \(AN\) là đường phân giác của \(\widehat {DAM}\) hay \(\widehat {DAB}.\)
c) Chứng minh tương tự câu a, ta cũng có tứ giác \(AMCN\) là hình bình hành.
Suy ra \(AN\,{\rm{//}}\,CM\) hay \(PN\,{\rm{//}}\,QM\).
Do \(DMBN\) là hình bình hành nên \(DM\,{\rm{//}}\,BN\) hay \(PM\,{\rm{//}}\,QN\).
Tứ giác \[PMQN\] có \(PN\,{\rm{//}}\,QM\)và \(PM\,{\rm{//}}\,QN\) nên \[PMQN\] là hình bình hành.
Lại có \(AMND\) là hình thoi nên \(AN \bot DM\) hay \(\widehat {MPN} = 90^\circ \).
Do đó hình bình hành \[PMQN\] là hình chữ nhật.
Để \[PMQN\] là hình vuông thì \(PM = PN\,\,\,\left( * \right)\)
Mà \(PM = \frac{1}{2}DM\) và \(PN = \frac{1}{2}AN\) (do \(AMND\) là hình thoi nên \(P\) là trung điểm của hai đường chéo).
Do đó để \(\left( * \right)\) xảy ra thì \(DM = AN\) hay hình thoi \(AMND\) là hình vuông, khi đó \(\widehat {DAM} = 90^\circ \).
Hình bình hành \(ABCD\) có \(\widehat {DAM} = 90^\circ \) thì sẽ trở thành hình chữ nhật.
Do đó, để \[PMQN\] là hình vuông thì \(ABCD\) phải là hình chữ nhật.
Thật vậy, khi \(ABCD\) là hình vuông thì hình chữ nhật \[PMQN\] có \(PM = PN\) nên là hình vuông.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp số: 19.
Ta có \({x^2} + {y^2} = {x^2} + 2xy + {y^2} - 2xy\)
\( = {\left( {x + y} \right)^2} - 2xy\)
\( = {5^2} - 2 \cdot 3 = 19\).
Vậy với \(x - y = 5\) và \(xy = 3\) thì giá trị của biểu thức \({x^2} + {y^2}\) bằng 19.
Lời giải
Đáp án đúng là: D
Ta có \[\left( {4{x^{10}}y - x{y^7} + {x^5}{y^4}} \right):2{x^n}{y^n}\]
\[ = 4{x^{10}}y:2{x^n}{y^n} - x{y^7}:2{x^n}{y^n} + {x^5}{y^4}:2{x^n}{y^n}\].
Để phép chia \(\left( {4{x^{10}}y - x{y^7} + {x^5}{y^4}} \right):2{x^n}{y^n}\) là phép chia hết thì \(n \le 1\) và \(n\) là số tự nhiên.
Do đó \(n \in \left\{ {0\,;\,\,1} \right\}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
15 câu Trắc nghiệm Toán 8 Kết nối tri thức Bài 1: Đơn thức có đáp án
15 câu Trắc nghiệm Toán 8 Chân trời sáng tạo Bài 1: Đơn thức và đa thức nhiều biến có đáp án
Bộ 10 đề thi cuối kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
15 câu Trắc nghiệm Toán 8 Cánh diều Bài 1: Đơn thức nhiều biến. Đa thức nhiều biến có đáp án
10 Bài tập Nhận biết đơn thức, đơn thức thu gọn, hệ số, phần biến và bậc của đơn thức (có lời giải)
Bộ 10 đề thi giữa kì 2 Toán 8 Cánh diều cấu trúc mới có đáp án (Đề 5)
Dạng 8: Bài luyện tập 3 dạng 4. Tổng hợp có đáp án
Dạng 2: Bài luyện tập 1 Dạng 2: Rút gọn phân thức có đáp án