Câu hỏi:

19/08/2025 43 Lưu

Cho hình bình hành \[ABCD\] có cạnh \(AB = 2AD.\) Gọi \[M,{\rm{ }}N\] lần lượt là trung điểm của \[AB\]\[CD.\]

a) Chứng minh rằng \(DMBN\) là hình bình hành.

b) Chứng minh rằng \(AN\) là tia phân giác của góc \[DAB.\]

c) Gọi giao điểm của \(AN\) với \[DM\]\[P,{\rm{ }}CM\] với \[BN\]\[Q.\] Tìm điều kiện của hình bình hành\[ABCD\] để tứ giác \[PMQN\] là hình vuông.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Cho hình bình hành \[ABCD\] có cạnh \(AB = 2AD.\) Gọi \[M,{\rm{ }}N\] lần lượt là trung điểm của \[AB\] và \[CD.\]  a) Chứng minh rằng \(DMBN\) là hình bình hành.  b) Chứng minh rằng \(AN\) là tia phân giác của góc \[DAB.\]  c) Gọi giao điểm của \(AN\) với \[DM\]là \[P,{\rm{ }}CM\] với \[BN\] là \[Q.\] Tìm điều kiện của hình bình hành\[ABCD\] để tứ giác \[PMQN\] là hình vuông. (ảnh 1)

a) Do \(ABCD\) là hình bình hành nên \(AB = CD\)\(AB\,{\rm{//}}\,CD\).

Lại có \[M,{\rm{ }}N\] lần lượt là trung điểm của \[AB\]\[CD\] nên \(AM = BM = \frac{1}{2}AB\)\(DN = CN = \frac{1}{2}CD.\)

Do đó \(AM = BM = DN = CN\).

Tứ giác \(DMBN\)\(BM\,{\rm{//}}\,DN\) (do \(AB\,{\rm{//}}\,CD)\)\(BM = DN\) nên \(DMBN\) là hình bình hành.

b) Xét tứ giác \(AMND\)\(AM\,{\rm{//}}\,DN\) (do \(AB\,{\rm{//}}\,CD)\)\(AM = DN\) nên \(AMND\) là hình bình hành

Lại có \(AB = 2AD\) nên \(AD = \frac{1}{2}AB\). Suy ra \(AM = AD\).

Hình bình hành \(AMND\)\(AM = AD\) nên \(AMND\) là hình thoi.

Suy ra đường chéo \(AN\) là đường phân giác của \(\widehat {DAM}\) hay \(\widehat {DAB}.\)

c) Chứng minh tương tự câu a, ta cũng có tứ giác \(AMCN\) là hình bình hành.

Suy ra \(AN\,{\rm{//}}\,CM\) hay \(PN\,{\rm{//}}\,QM\).

Do \(DMBN\) là hình bình hành nên \(DM\,{\rm{//}}\,BN\) hay \(PM\,{\rm{//}}\,QN\).

Tứ giác \[PMQN\]\(PN\,{\rm{//}}\,QM\)\(PM\,{\rm{//}}\,QN\) nên \[PMQN\] là hình bình hành.

Lại có \(AMND\) là hình thoi nên \(AN \bot DM\) hay \(\widehat {MPN} = 90^\circ \).

Do đó hình bình hành \[PMQN\] là hình chữ nhật.

Để \[PMQN\] là hình vuông thì \(PM = PN\,\,\,\left( * \right)\)

\(PM = \frac{1}{2}DM\)\(PN = \frac{1}{2}AN\) (do \(AMND\) là hình thoi nên \(P\) là trung điểm của hai đường chéo).

Do đó để \(\left( * \right)\) xảy ra thì \(DM = AN\) hay hình thoi \(AMND\) là hình vuông, khi đó \(\widehat {DAM} = 90^\circ \).

Hình bình hành \(ABCD\)\(\widehat {DAM} = 90^\circ \) thì sẽ trở thành hình chữ nhật.

Do đó, để \[PMQN\] là hình vuông thì \(ABCD\) phải là hình chữ nhật.

Thật vậy, khi \(ABCD\) là hình vuông thì hình chữ nhật \[PMQN\]\(PM = PN\) nên là hình vuông.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án:      a) Đúng.    b) Sai.        c) Sai.        d) Đúng.

Cho tam giác nhọn \[ABC\] có \[AB < BC.\] Từ trung điểm \(M\) của cạnh \(AB\) kẻ đường thẳng song song với \(BC\) cắt cạnh \(AC\) tại \(N.\) Trên cạnh \(BC\) lấy điểm \(D\) sao cho \(BD = MN.\) Kẻ đường cao \[AH\left( {H \in BC} \right)\] của tam giác \[ABC\].  a) Tứ giác \(BMND\)là hình bình hành.	b) Tam giác \(AMH\) cân tại \(A\). c) \(\widehat {AMN} = \frac{2}{3}\widehat {HMN}.\)	d) Tứ giác \(DHMN\) là hình thang cân. (ảnh 1)

Tứ giác \(BMND\) có: \[MN\parallel BD{\rm{ }}\left( {MN\parallel BC} \right)\]; \[MN = BD\] (gt).

Do đó, tứ giác \(BMND\)là hình bình hành. Do đó ý a) là đúng.

Vì \(\Delta {\rm{ }}ABH\) vuông tại \(H\,\,\left( {AH \bot BC} \right)\) có \(HM\) là trung tuyến nên \(HM = \frac{1}{2}AB\).

\(MA = \frac{1}{2}AB\) suy ra \(MA = HM\).

Vậy \(\Delta {\rm{ }}AMH\) cân tại \[M\].  Do đó ý b) sai.

Tứ giác \(DHMN\) \[MN\parallel DH{\rm{ }}\left( {MN\parallel BC} \right)\] nên tứ giác \(DHMN\) là hình thang.                        \(\left( 1 \right)\)

Ta có \(AH \bot BC\); \[MN\parallel BC\] nên \(AH \bot MN\).

Vì \(\Delta {\rm{ }}AMH\) cân tại \[M\]\(AH \bot MN\) nên \(MN\) là phân giác của \(\Delta {\rm{ }}AMH\).

Do đó \(\widehat {AMN} = \widehat {HMN}.\) Do đó ý c) sai.

Tứ giác \(BMND\)là hình bình hành nên \[ND\parallel MB\].

Do đó \(\widehat {AMN} = \widehat {DNM}\)     (so le trong) nên \(\widehat {HMN} = \widehat {DNM}\).   \(\left( 2 \right)\)

Từ \(\left( 1 \right)\)\(\left( 2 \right)\) suy ra tứ giác \(DHMN\) là hình thang cân. Do đó ý d) đúng.

Câu 2

A. \(n = 0\).                      

B. \(n = 1\).                       
C. \(n = 5\).                   
D. \(n \in \left\{ {0\,;\,\,1} \right\}\).

Lời giải

Đáp án đúng là: D

Ta có \[\left( {4{x^{10}}y - x{y^7} + {x^5}{y^4}} \right):2{x^n}{y^n}\]

\[ = 4{x^{10}}y:2{x^n}{y^n} - x{y^7}:2{x^n}{y^n} + {x^5}{y^4}:2{x^n}{y^n}\].

Để phép chia \(\left( {4{x^{10}}y - x{y^7} + {x^5}{y^4}} \right):2{x^n}{y^n}\) là phép chia hết thì \(n \le 1\) và \(n\) là số tự nhiên.

Do đó \(n \in \left\{ {0\,;\,\,1} \right\}\).

Câu 3

A. Tứ giác có 4 cạnh bằng nhau.

B. Tứ giác có hai đường chéo vuông góc.

C. Hình bình hành có hai đường chéo bằng nhau.

D. Tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\frac{1}{2}{y^2}\).  

B. \(\frac{1}{2}x{y^3}\).                                      
C. \(50{x^4}{y^8}\).            
D. \({y^4}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(2{x^2} - 12x + 9\).  

B. \(2{x^2} + 12x + 9\). 
C. \(4{x^2} - 12x + 9\).      
D. \(4{x^2} - 6x + 9\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \({\left( {x + y} \right)^2} = {x^2} + 2xy + {y^2}\).                                          

B. \({\left( {x + y} \right)^3} = {x^3} + 3{x^2}y + 3x{y^2} + {y^3}\).                          

C. \({x^3} - {y^3} = \left( {x - y} \right)\left( {{x^2} + xy + {y^2}} \right)\).       
D. \({\left( {x - y} \right)^3} = {x^3} - {y^3}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP