Câu hỏi:

19/08/2025 52 Lưu

Cho đa thức \(A = 3{x^2}y - 2x{y^2} - 4xy + 1.\)

Đa thức \(B\) và \(M\) thỏa mãn \(B - A = - 2{x^3}y + 7{x^2}y + 3xy\,;\, & A + M = 3{x^2}{y^2} - 5{x^2}y + 8xy.\)

a) Với \[x = - 1\,;\,\,y = 1\] thì giá trị của biểu thức \(A\) bằng 9.

b) Đa thức \(B\) sau khi thu gọn có 5 hạng tử.

c) Đa thức \(M\) có bậc là 2.

d) Tổng của hai đa thức \(B\) và \(M\) có hạng tử tự do là 1.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:   a) Đúng.  b) Đúng.  c) Sai.      d) Sai.

Thay \[x = - 1\,;\,\,y = 1\] vào biểu thức \(A\), ta có:

\(A = 3 \cdot {\left( { - 1} \right)^2} \cdot 1 - 2 \cdot \left( { - 1} \right) \cdot {1^2} - 4 \cdot \left( { - 1} \right) \cdot 1 + 1 = 3 + 2 + 4 = 9.\)

Vậy với \[x = - 1\,;\,\,y = 1\] thì \(A = 9\). Do đó ý a) đúng.

Ta có \(B - A = - 2{x^3}y + 7{x^2}y + 3xy.\)

Suy ra \(B = - 2{x^3}y + 7{x^2}y + 3xy + A\)

\( = - 2{x^3}y + 7{x^2}y + 3xy + \left( {3{x^2}y - 2x{y^2} - 4xy + 1} \right)\)

\( = - 2{x^3}y + 7{x^2}y + 3xy + 3{x^2}y - 2x{y^2} - 4xy + 1\)

\( = - 2{x^3}y + \left( {7{x^2}y + 3{x^2}y} \right) - 2x{y^2} + \left( {3xy - 4xy} \right) + 1\)

\( = - 2{x^3}y + 10{x^2}y - 2x{y^2} - xy + 1\).

Khi đó, đa thức \(B\) sau khi thu gọn có 5 hạng tử. Do đó ý b) đúng.

Ta có \(A + M = 3{x^2}{y^2} - 5{x^2}y + 8xy\).

Suy ra \(M = 3{x^2}{y^2} - 5{x^2}y + 8xy - A\)

\( = 3{x^2}{y^2} - 5{x^2}y + 8xy - \left( {3{x^2}y - 2x{y^2} - 4xy + 1} \right)\)

\( = 3{x^2}{y^2} - 5{x^2}y + 8xy - 3{x^2}y + 2x{y^2} + 4xy - 1\)

\( = 3{x^2}{y^2} - \left( {5{x^2}y + 3{x^2}y} \right) + 2x{y^2} + \left( {8xy + 4xy} \right) - 1\)

\( = 3{x^2}{y^2} - 8{x^2}y + 2x{y^2} + 12xy - 1\).

Khi đó, đa thức \(M\) có bậc là 4. Do đó ý c) sai.

Tổng của hai đa thức \(B\) và \(M\) là:

\[B + M = \left( { - 2{x^3}y + 10{x^2}y - 2x{y^2} - xy + 1} \right) + \left( {3{x^2}{y^2} - 8{x^2}y + 2x{y^2} + 12xy - 1} \right)\]

\[ = - 2{x^3}y + 10{x^2}y - 2x{y^2} - xy + 1 + 3{x^2}{y^2} - 8{x^2}y + 2x{y^2} + 12xy - 1\]

\[ = - 2{x^3}y + 3{x^2}{y^2} + \left( {10{x^2}y - 8{x^2}y} \right) + \left( {2x{y^2} - 2x{y^2}} \right) + \left( {12xy - xy} \right) + \left( {1 - 1} \right)\]

\[ = - 2{x^3}y + 3{x^2}{y^2} + 2{x^2}y + 11xy\].

Như vậy, tổng của hai đa thức \(B\) và \(M\) có hạng tử tự do là 0. Do đó ý d) sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có: \(2{x^2} + 10{y^2} - 6xy - 6x - 2y + 10 = 0\)

\(\left( {{x^2} - 6xy + 9{y^2}} \right) + \left( {{x^2} - 6x + 9} \right) + \left( {{y^2} - 2y + 1} \right) = 0\)

\({\left( {x - 3y} \right)^2} + {\left( {x - 3} \right)^2} + {\left( {y - 1} \right)^2} = 0\,\,\,\left( * \right)\)

Với mọi \(x,y\) ta có: \({\left( {x - 3y} \right)^2} \ge 0,\,\,{\left( {x - 3} \right)^2} \ge 0,\,\,{\left( {y - 1} \right)^2} \ge 0\)

Do đó \(\left( * \right)\) xảy ra khi và chỉ khi \(\left\{ \begin{array}{l}{\left( {x - 3y} \right)^2} = 0\\{\left( {x - 3} \right)^2} = 0\\{\left( {y - 1} \right)^2} = 0\end{array} \right.\)

Hay \(\left\{ \begin{array}{l}x - 3y = 0\\x - 3 = 0\\y - 1 = 0\end{array} \right.\), tức là \(\left\{ \begin{array}{l}x = 3\\y = 1\end{array} \right.\)

Khi đó \(A = \frac{{{{\left( {x + y - 4} \right)}^{2024}} - {y^{2024}}}}{x} = \frac{{{{\left( {3 + 1 - 4} \right)}^{2024}} - {1^{2024}}}}{3} = \frac{{0 - 1}}{3} =  - \frac{1}{3}.\)

Câu 2

A. \(A =  - \frac{{15}}{{13}}\);                   
B. \(A =  - 12\);          
C. \(A =  - 15\);   
D. \(A = 14\).

Lời giải

Đáp án đúng là: C

Ta có: \(A =  - \frac{1}{3}x{y^2} + \frac{1}{2}{x^2}y + x{y^2} - \frac{3}{4}{x^2}y\)

\( = \left( { - \frac{1}{3}x{y^2} + x{y^2}} \right) + \left( {\frac{1}{2}{x^2}y - \frac{3}{4}{x^2}y} \right)\)

\( = \frac{2}{3}x{y^2} - \frac{1}{4}{x^2}y\).

Thay \(x =  - 2\) và \(y = 3\) vào biểu thức \(A\) ta được:

\(A = \frac{2}{3} \cdot \left( { - 2} \right) \cdot {3^2} - \frac{1}{4} \cdot {\left( { - 2} \right)^2} \cdot 3 =  - 12 - 3 =  - 15.\)

Câu 3

  A. \(\frac{1}{2}xyx\); 
B. \(3{x^2}yz\);       
C. \(x{y^2}\);             
D. \( - 3{x^2}z\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(40^\circ ;\)

B. \(80^\circ ;\)

C. \(120^\circ ;\)

D. \(160^\circ .\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\left( {x + 1} \right)y\);                          

B. \(2{x^2}\left( { - \frac{1}{2}} \right)y\);      

 C. \({x^2}zt\); 
D. \(0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP