Xác định bậc của đa thức \(A\) biết: \(\left( {{x^2} - y} \right)\left( {3x + {y^2}} \right) = A + \left( {6{x^4}y - 2x{y^4}} \right):2xy.\)
Quảng cáo
Trả lời:
Đáp số: 4.
a) Ta có: \(\left( {{x^2} - y} \right)\left( {3x + {y^2}} \right) = A + \left( {6{x^4}y - 2x{y^4}} \right):2xy.\)
Suy ra \(A = \left( {{x^2} - y} \right)\left( {3x + {y^2}} \right) - \left( {6{x^4}y - 2x{y^4}} \right):2xy\)
\[ = {x^2}\left( {3x + {y^2}} \right) - y\left( {3x + {y^2}} \right) - \left[ {6{x^4}y:\left( {2xy} \right) - 2x{y^4}:\left( {2xy} \right)} \right]\]
\[ = 3{x^3} + {x^2}{y^2} - 3xy - {y^3} - \left( {3{x^3} - {y^3}} \right)\]
\[ = 3{x^3} + {x^2}{y^2} - 3xy - {y^3} - 3{x^3} + {y^3}\]
\[ = \left( {3{x^3} - 3{x^3}} \right) + {x^2}{y^2} - 3xy + \left( { - {y^3} + {y^3}} \right)\]
\[ = {x^2}{y^2} - 3xy.\]
Ta thấy hạng tử \[{x^2}{y^2}\] có bậc là 4, hạng tử \[ - 3xy\] có bậc là 2.
Do đó đa thức \(A = {x^2}{y^2} - 3xy\) có bậc là 4.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: C
Ta có: \(A = - \frac{1}{3}x{y^2} + \frac{1}{2}{x^2}y + x{y^2} - \frac{3}{4}{x^2}y\)
\( = \left( { - \frac{1}{3}x{y^2} + x{y^2}} \right) + \left( {\frac{1}{2}{x^2}y - \frac{3}{4}{x^2}y} \right)\)
\( = \frac{2}{3}x{y^2} - \frac{1}{4}{x^2}y\).
Thay \(x = - 2\) và \(y = 3\) vào biểu thức \(A\) ta được:
\(A = \frac{2}{3} \cdot \left( { - 2} \right) \cdot {3^2} - \frac{1}{4} \cdot {\left( { - 2} \right)^2} \cdot 3 = - 12 - 3 = - 15.\)
Câu 2
A. 4 góc nhọn;
B. 4 góc tù;
Lời giải
Đáp án đúng là: C
Giả sử có một tứ giác có 4 góc nhọn có số đo nhỏ hơn \[90^\circ \], khi đó tổng số đo các góc của tứ giác nhỏ hơn \(4 \cdot 90^\circ = 360^\circ \), điều này mâu thuẫn với định lí tổng số đo các góc của tứ giác bằng \(360^\circ \). Như vậy, không tồn tại tứ giác có 4 góc nhọn.
Tương tự như vậy, cũng không tồn tại tứ giác có 4 góc tù.
Giả sử có một tứ giác có 1 góc vuông, 3 góc nhọn, khi đó tổng số đo các góc của tứ giác cũng nhỏ hơn \(90^\circ + 3 \cdot 90^\circ = 360^\circ \). Vậy không tồn tại tứ giác như vậy.
Ta chọn phương án C.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
B. \(2{x^2}\left( { - \frac{1}{2}} \right)y\);
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.