Câu hỏi:

19/06/2025 38

Đẳng thức nào sau đây là hằng đẳng thức?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Đẳng thức \({x^2} - x = - x + {x^2}\) là hằng đẳng thức.

Đẳng thức \(x\left( {x - 1} \right) = x - {x^2}\) không là hằng đẳng thức vì khi ta thay \(x = 2\) thì hai đẳng thức không bằng nhau.

Đẳng thức \({\left( {a - b} \right)^2} = - {\left( {b - a} \right)^2}\) không là hằng đẳng thức vì khi ta thay \(a = 0,\,\,b = 1\) thì hai đẳng thức không bằng nhau.

Đẳng thức \(a - 2 = 2 - a\) không là hằng đẳng thức vì khi ta thay \(a = 0\) thì hai đẳng thức không bằng nhau.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án:      a) Đúng.    b) Đúng.     c) Sai.        d) Sai.

Mỗi hộp quà có 5 mặt gồm 4 mặt bên và 1 mặt đáy. Do đó ý a) đúng.

Diện tích xung quanh của một hộp quà là: \({S_{xq}} = \frac{1}{2} \cdot \left( {4 \cdot 6} \right) \cdot 4 = 48{\rm{\;}}\,\left( {{\rm{c}}{{\rm{m}}^2}} \right).\) Do đó ý b) đúng.

Diện tích các mặt của hộp quà là:  Do đó ý c) sai.

Để làm 4 hộp quà bạn Uyên cần dùng diện tích giấy là: \(4 \cdot 84 = 336{\rm{\;}}\left( {{\rm{c}}{{\rm{m}}^2}} \right).\) Do đó ý d) sai.

Lời giải

1.

1. Một viên bi lăn từ vị trí \(A\) đến vị trí \(D\) theo đường gấp khúc \(ABCD\) hết 21 giây, biết rằng \(AB = 10{\rm{\;cm}},\) \(BC = 12{\rm{\;cm}},\) \(CD = 6{\rm{\;cm}}\) (hình vẽ bên). Hỏi nếu viên bi đó lăn theo đoạn thẳng \(AD\) thì hết bao nhiêu giây? Giả sử vận tốc của viên bi không thay đổi. (ảnh 1)

Từ \(D\) vẽ \(Dx \bot CD\) cắt tia \(AB\) tại \(E.\)

Xét tứ giác \(BCDE\)\(\widehat {BCD} = \widehat {CDE} = \widehat {CBE} = 90^\circ \) nên \(BCDE\) là hình chữ nhật.

Do đó \(DE = BC = 12{\rm{\;cm}},\,\,BE = CD = 6{\rm{\;cm}}.\)

\(AE = AB + BE = 10 + 6 = 16{\rm{\;}}\left( {{\rm{cm}}} \right).\)

Áp dụng định lí Pythagore cho \(\Delta ADE\) vuông tại \(E,\) ta được: \(A{D^2} = A{E^2} + D{E^2} = {16^2} + {12^2} = 400.\)

Suy ra \[AD = \sqrt {400} = 20{\rm{\;}}\left( {{\rm{cm}}} \right).\]

Thời gian viên bi lăn theo đoạn thẳng \(AD\)\(\frac{{20 \cdot 21}}{{28}} = 15\) (giây).

2. a) Mặt đáy của hình chóp \(S.ABC\) là một tam giác đều \(ABC\) có cạnh \(60{\rm{ cm}}{\rm{.}}\)

Tam giác đều \(ABC\) có \(CH\)là đường cao nên \(CH\) cũng là đường trung tuyến nên

\(HA = HB = \frac{{AB}}{2} = 30{\rm{ }}\left( {{\rm{cm}}} \right){\rm{.}}\)

Áp dụng định lý Pythagore vào \(\Delta BHC\) vuông tại \(H\), ta có:

\(B{C^2} = H{B^2} + H{C^2}\) suy ra \[H{C^2} = B{C^2} - H{B^2} = {60^2} - {30^2} = 2{\rm{ }}700\].

Do đó \(CH = \sqrt {2700} = 30\sqrt 3 {\rm{ }}\left( {{\rm{cm}}} \right)\).

Vậy \(HA = 30{\rm{ cm}}\,;\,\,CH = 30\sqrt 3 {\rm{ cm}}.\)

b) Gọi \(G\) là trọng tâm của mặt đáy nên \(GH = \frac{1}{3}HC = \frac{{30\sqrt 3 }}{3} = 10\sqrt 3 {\rm{ }}\left( {{\rm{cm}}} \right)\).

Hình chóp \(S.ABC\) có đường cao \(SG\) nên \(SG \bot HC.\)

Áp dụng định lý Pythagore vào \(\Delta SHG\) vuông tại \(G\), ta có:

\(S{H^2} = S{G^2} + H{G^2} = {90^2} + {30^2} = 9\,\,000\).

Suy ra \(SH = \sqrt {9\,\,000} = 30\sqrt {10} {\rm{ }}\left( {{\rm{cm}}} \right){\rm{.}}\)

Nửa chu vi đáy là: \(P = \frac{1}{2}\left( {60 + 60 + 60} \right) = 90{\rm{ }}\left( {{\rm{cm}}} \right)\).

Diện tích xung quanh của hình chóp là \(S = P \cdot d = 90 \cdot 30\sqrt {10} \approx 8\,\,538{\rm{ }}\left( {{\rm{c}}{{\rm{m}}^{\rm{2}}}} \right)\).

Vậy diện tích xung quanh của hình chóp là \(8\,\,538{\rm{ c}}{{\rm{m}}^{\rm{2}}}\).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP