Câu hỏi:

19/06/2025 29

Cho \(B - \left( {5{x^2} - 2xyz} \right) = 2{x^2} + 2xyz + 1\). Hạng tử tự do của đa thức \(B\) là bao nhiêu?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp số: 1.

Ta có \(B - \left( {5{x^2} - 2xyz} \right) = 2{x^2} + 2xyz + 1\)

Suy ra \[B = \left( {2{x^2} + 2xyz + 1} \right) + \left( {5{x^2} - 2xyz} \right)\]

\( = 2{x^2} + 2xyz + 1 + 5{x^2} - 2xyz\)

\( = \left( {2{x^2} + 5{x^2}} \right) + \left( {2xyz - 2xyz} \right) + 1 = 7{x^2} + 1\).

Do đó, hạng tử tự do của đa thức \(B\) là 1.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp số: 63.

Diện tích xung quanh bộ nam châm xếp hình đó là:

\[{S_{xq}} = \frac{1}{2} \cdot C \cdot d = \frac{1}{2} \cdot \left( {3 \cdot 6} \right) \cdot 7 = 63\,\,\left( {{\rm{c}}{{\rm{m}}^{\rm{2}}}} \right)\].

Vậy diện tích xung quanh bộ nam châm xếp hình đó là \[63\,\,{\rm{c}}{{\rm{m}}^{\rm{2}}}.\]

Lời giải

Đáp số: 75.

Xét tứ giác \(MNPQ\)\(\widehat M + \widehat N + \widehat P + \widehat Q = 360^\circ \) (định lí tổng các góc của một tứ giác).

Thay \(\widehat N = \widehat M + 10^\circ \), \(\widehat P = \widehat N + 10^\circ = \widehat M + 20^\circ \), \(\widehat Q = \widehat P + 10^\circ = \widehat M + 30^\circ \) vào biểu thức trên, ta được:

\(\widehat M + \widehat M + 10^\circ + \widehat M + 20^\circ + \widehat M + 30^\circ = 360^\circ \)

\(4\widehat M + 60^\circ = 360^\circ \)

\(4\widehat {M\,} = 300^\circ \)

\(\widehat M = 75^\circ \)

Vậy \(\widehat M = 75^\circ \).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP