Câu hỏi:
21/06/2025 149
Cho hàm số y = f(x) có đạo hàm trên R và đồ thị hàm số y = f '(x) được cho bởi hình bên.
Giả sử \[f'\left( x \right) > x + 2,\forall x \in \left( { - 2;0} \right)\]và \[f'\left( x \right) < x + 2,\forall x \in \left( {0;1} \right) \cup \left( {1;3} \right)\].
Xét hàm số \[g\left( x \right) = 2f\left( x \right) - {\left( {x + 2} \right)^2},x \in \left[ { - 2;3} \right]\].
Tìm giá trị nhỏ nhất của hàm số g(x) trên đoạn [-2;3], biết rằng f(−2) = 1.
Cho hàm số y = f(x) có đạo hàm trên R và đồ thị hàm số y = f '(x) được cho bởi hình bên.
![Cho hàm số y = f(x) có đạo hàm trên R và đồ thị hàm số y = f '(x) được cho bởi hình bên. Giả sử \[f'\left( x \right) > x + 2,\forall x \in \left( { - 2;0} \right)\]và \[f'\left( x \right) < x + 2,\forall x \in \left( {0;1} \right) \cup \left( {1;3} \right)\]. Xét hàm số \[g\left( x \right) = 2f\left( x \right) - {\left( {x + 2} \right)^2},x \in \left[ { - 2;3} \right]\]. Tìm giá trị nhỏ nhất của hàm số g(x) trên đoạn [-2;3], biết rằng f(−2) = 1. (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/06/blobid4-1750474753.png)
Giả sử \[f'\left( x \right) > x + 2,\forall x \in \left( { - 2;0} \right)\]và \[f'\left( x \right) < x + 2,\forall x \in \left( {0;1} \right) \cup \left( {1;3} \right)\].
Xét hàm số \[g\left( x \right) = 2f\left( x \right) - {\left( {x + 2} \right)^2},x \in \left[ { - 2;3} \right]\].
Tìm giá trị nhỏ nhất của hàm số g(x) trên đoạn [-2;3], biết rằng f(−2) = 1.
Câu hỏi trong đề: Đề thi Toán ĐGNL Đại học Sư phạm Hà Nội 2025 có đáp án !!
Quảng cáo
Trả lời:
![Cho hàm số y = f(x) có đạo hàm trên R và đồ thị hàm số y = f '(x) được cho bởi hình bên. Giả sử \[f'\left( x \right) > x + 2,\forall x \in \left( { - 2;0} \right)\]và \[f'\left( x \right) < x + 2,\forall x \in \left( {0;1} \right) \cup \left( {1;3} \right)\]. Xét hàm số \[g\left( x \right) = 2f\left( x \right) - {\left( {x + 2} \right)^2},x \in \left[ { - 2;3} \right]\]. Tìm giá trị nhỏ nhất của hàm số g(x) trên đoạn [-2;3], biết rằng f(−2) = 1. (ảnh 2)](https://video.vietjack.com/upload2/quiz_source1/2025/06/blobid3-1750474635.png)
Ta có \[g'\left( x \right) = 2f'\left( x \right) - 2(x + 2),x \in \left[ { - 2;3} \right].\]
Vẽ đường thẳng y = x + 2 và dựa vào đồ thị, ta có:
\[g'\left( x \right) = 0\] trên đoạn \[\left[ { - 2;3} \right]\] tại \[x \in \left\{ { - 2;0;1;3} \right\}.\]
Từ giả thiết ta có \[g'\left( x \right) > 0,\forall x \in \left( { - 2;0} \right);g'\left( x \right) < 0,\forall x \in \left( {0;1} \right) \cup \left( {1;3} \right).\]
Ta có bảng biến thiên:
Ta có: \[\int_{ - 2}^0 {\left( {f'\left( x \right) - \left( {x + 2} \right)} \right)} dx > \int_0^3 {\left( {x + 2 - f'\left( x \right)} \right)} dx\]
\[ \Rightarrow \int_{ - 2}^0 {g'\left( x \right)} dx > \int_0^3 {\left( { - g'\left( x \right)} \right)} dx \Rightarrow g\left( 0 \right) - g\left( { - 2} \right) > g\left( 0 \right) - g\left( 3 \right)\]- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.