Câu hỏi:
01/07/2025 8
Hàm chi phí đơn giản nhất là hàm chi phí bậc nhất \(y = ax + b,\) trong đó \(b\) biểu thị chi phí cố định của hoạt động kinh doanh và hệ số \(a\) biểu thị chi phí của mỗi mặt hàng được sản xuất. Giả sử rằng một xưởng sản xuất xe đạp có chi phí cố định hằng ngày là 36 triệu đồng và mỗi chiếc xe đạp có chi phí sản xuất là \(1,8\) triệu đồng.
a) Viết công thức của hàm số bậc nhất biểu thị chi phí \(y\) (triệu đồng) để sản xuất \(x\) (xe đạp) trong một ngày.
b) Có thể sản xuất bao nhiêu chiếc xe đạp trong ngày, nếu chi phí trong ngày đó là 72 triệu đồng?
Hàm chi phí đơn giản nhất là hàm chi phí bậc nhất \(y = ax + b,\) trong đó \(b\) biểu thị chi phí cố định của hoạt động kinh doanh và hệ số \(a\) biểu thị chi phí của mỗi mặt hàng được sản xuất. Giả sử rằng một xưởng sản xuất xe đạp có chi phí cố định hằng ngày là 36 triệu đồng và mỗi chiếc xe đạp có chi phí sản xuất là \(1,8\) triệu đồng.
a) Viết công thức của hàm số bậc nhất biểu thị chi phí \(y\) (triệu đồng) để sản xuất \(x\) (xe đạp) trong một ngày.
b) Có thể sản xuất bao nhiêu chiếc xe đạp trong ngày, nếu chi phí trong ngày đó là 72 triệu đồng?
Quảng cáo
Trả lời:
a) Công thức của hàm số bậc nhất biểu thị chi phí \(y\) (triệu đồng) để sản xuất \(x\) (xe đạp) trong một ngày là:
\(y = 1,8x + 36\) (triệu đồng).
b) Do chi phí trong ngày đó là 72 triệu đồng nên \(y = 72\) (triệu đồng).
Thay \(y = 72\) vào công thức \(y = 1,8x + 36\) ta có:
\(1,8x + 36 = 72\)
\(1,8x = 36\)
\(x = 20\).
Vậy với chi phí là 72 triệu đồng thì trong ngày đó có thể sản xuất được 20 chiếc xe đạp.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
1. Vì \[Q\] là trung điểm \[EC,{\rm{ }}P\] là trung điểm của \[DC\] nên \[PQ\] là đường trung bình của tam giác \[CDE\]
Khi đó \(QP = \frac{1}{2}DE\).
Do đó \(DE = 2QP = 2 \cdot 1,5 = 3\,\,{\rm{(m)}}\).
Vậy chiều dài mái \[DE\] bằng \[3\,\,{\rm{m}}.\]
2. a) Xét \[\Delta FHB\] và \[\Delta EHC\] có: \[\widehat {FHB} = \widehat {EHC}\]; \(\widehat {HFB} = \widehat {HEC}\;\left( { = 90^\circ } \right)\) Do đó . b) Xét \[\Delta AEB\] và \[\Delta AFC\] có: \(\widehat {EAB} = \widehat {FAC}\;\,\left( {\widehat A\;\,{\rm{chung}}} \right)\); \(\widehat {AEB} = \widehat {AFC}\;\left( { = 90^\circ } \right)\) Do đó Suy ra \(\frac{{AE}}{{AF}} = \frac{{AB}}{{AC}}\) hay \(AF \cdot AB = AE \cdot AC\) (đpcm) |
![]() |
c) • Xét \[\Delta ABC\] có hai đường cao \[BE,{\rm{ }}CF\] và cắt nhau tại \[H\] nên suy ra \[H\] là trực tâm của tam giác \[ABC\] nên \[AH \bot BC\]. (1)
• Xét \[\Delta BEM\] vuông tại \[E\] có \[I\] là trung điểm của \[BM\] nên \(IE = BI = IM = \frac{{BM}}{2}\).
• Xét \[\Delta IEM\] có \[IE = IM\] (cmt) nên tam giác \[IEM\] cân tại \[I\].
Suy ra \(\widehat {IEM} = \widehat {IME}\). (2)
• Xét \[\Delta ABC\] có \[FE{\rm{ // }}BC\] suy ra \(\widehat {AEF} = \widehat {AMB}\) (hai góc đồng vị). (3)
• Ta có \[AF \cdot AB = AE \cdot AC\] suy ra \(\frac{{AF}}{{AC}} = \frac{{AE}}{{AB}}\).
• Xét \[\Delta ABF\] và \[\Delta ABC\] có:
\[\widehat {EAF} = \widehat {BAC}\,\;\left( {\widehat A\;\,{\rm{chung}}} \right)\]; \[\frac{{AF}}{{AC}} = \frac{{AE}}{{AB}}\;\,\left( {{\rm{cmt}}} \right)\]
Do đó .
Suy ra \(\widehat {AEF} = \widehat {ABC}\) (hai góc tương ứng). (4)
Từ (2), (3), (4) suy ra \(\widehat {CED} = \widehat {ABC}\).
• Xét \[\Delta CED\] và \[\Delta CBA\] có:
\(\widehat {ECD} = \widehat {BCA}\,\;\left( {\widehat C\;\,{\rm{chung}}} \right)\); \(\widehat {CED} = \widehat {ABC}\;\,\left( {{\rm{cmt}}} \right)\)
Do đó .
Suy ra \(\frac{{CE}}{{CB}} = \frac{{CD}}{{CA}}\) hay \(\frac{{CE}}{{CD}} = \frac{{CB}}{{CA}}\).
• Xét \[\Delta CEB\] và \[\Delta CDA\] có:
\(\frac{{CE}}{{CD}} = \frac{{CB}}{{CA}}\;\,\left( {{\rm{cmt}}} \right)\); \(\widehat {ECB} = \widehat {DCA}\,\;\left( {\widehat C\;\,{\rm{chung}}} \right)\)
Do đó .
Suy ra \(\widehat {CDA} = \widehat {CEB}\) (hai góc tương ứng).
Nên \(\widehat {CDA} = 90^\circ \), do đó \(AD \bot BC\). (5)
Từ (1) và (5) suy ra ba điểm \[A,{\rm{ }}H,{\rm{ }}D\] thẳng hàng (đpcm).
Lời giải
Gọi \(x,\,\,y\) (viên) lần lượt là số viên bi đỏ và xanh cần thêm \(\left( {x,\,\,y \in \mathbb{N}*} \right)\).
Tổng số viên bi trong hộp ban đầu là: \(6 + 3 = 9\) (viên bi).
Lấy ngẫu nhiên 1 viên bi trong hộp nên có 9 kết quả có thể xảy ra.
Số kết quả thuận lợi để lấy được viên bi đỏ ban đầu là 6.
Khi đó, xác suất lấy được viên bi màu đỏ là \(\frac{6}{9} = \frac{2}{3}.\)
Số kết quả thuận lợi để lấy được viên bi xanh ban đầu là 3.
Khi đó, xác suất lấy được viên bi màu xanh là \(\frac{3}{9} = \frac{1}{3}.\)
Sau khi số bi tăng thêm, trong hộp có tất cả \(\left( {9 + x + y} \right)\) viên bi, trong đó có \(\left( {6 + x} \right)\) viên bi đỏ và \(\left( {3 + y} \right)\) viên bi xanh.
Do đó xác suất chọn được một viên bi mỗi màu không đổi nên ta có
\(\left\{ \begin{array}{l}\frac{{6 + x}}{{9 + x + y}} = \frac{2}{3}\\\frac{{3 + y}}{{9 + x + y}} = \frac{1}{3}\end{array} \right.\), suy ra \(6 + x = 2\left( {3 + y} \right)\) nên \(x = 2y.\)
Do \(x,\,\,y \in \mathbb{N}*\) và số bi cần thêm vào là ít nhất nên \(y = 1\) và \(x = 2.\)
Vậy cần phải thêm ít nhất 2 viên bi màu đỏ, 1 viên bi xanh.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.