Câu hỏi:
01/07/2025 5
1. Giải các phương trình sau:
a) \[6x + 7 = 3x--2\];
b) \(\frac{{2x - 1}}{3} + \frac{{x + 4}}{2} = \frac{{5x + 20}}{6}\).
2. Giải bài toán sau bằng cách lập phương trình bậc nhất một ẩn:
Người ta hòa lẫn chất lỏng thứ nhất có khối lượng riêng với chất lỏng thứ hai có khối lượng riêng thì được một hỗn hợp có khối lượng riêng . Biết khối lượng của chất lỏng thứ nhất lớn hơn khối lượng của chất lỏng thứ hai là 2 kg. Tính khối lượng của mỗi chất lỏng.
1. Giải các phương trình sau:
a) \[6x + 7 = 3x--2\];
b) \(\frac{{2x - 1}}{3} + \frac{{x + 4}}{2} = \frac{{5x + 20}}{6}\).
2. Giải bài toán sau bằng cách lập phương trình bậc nhất một ẩn:
Người ta hòa lẫn chất lỏng thứ nhất có khối lượng riêng với chất lỏng thứ hai có khối lượng riêng thì được một hỗn hợp có khối lượng riêng . Biết khối lượng của chất lỏng thứ nhất lớn hơn khối lượng của chất lỏng thứ hai là 2 kg. Tính khối lượng của mỗi chất lỏng.
Quảng cáo
Trả lời:
\[6x--3x = --2--7\] \[3x = --9\] \[x = --3\] Vậy nghiệm của phương trình là \[x = --3\]. |
b) \(\frac{{2x - 1}}{3} + \frac{{x + 4}}{2} = \frac{{5x + 20}}{6}\) \[\frac{{2\left( {2x - 1} \right)}}{6} + \frac{{3\left( {x + 4} \right)}}{6} = \frac{{5x + 20}}{6}\] \[\frac{{4x - 2}}{6} + \frac{{3x + 12}}{6} = \frac{{5x + 20}}{6}\] \[\frac{{7x + 10}}{6} = \frac{{5x + 20}}{6}\] \[7x + 10 = 5x + 20\] \[7x - 5x = 20 - 10\] \[2x = 10\] \[x = 5\] Vậy nghiệm của phương trình là \[x = 5.\] |
2. Gọi x (kg) là khối lượng của chất lỏng thứ hai \(\left( {x > 0} \right).\)
Khối lượng của chất lỏng thứ nhất là \(x + 2\,\,\left( {{\rm{kg}}} \right){\rm{.}}\)
Thể tích của chất lỏng thứ nhất là
Thể tích của chất lỏng thứ hai là
Thể tích của hỗn hợp chất lỏng là
Theo đề bài, ta có phương trình:
\(\frac{{x + 2}}{{700}} + \frac{x}{{500}} = \frac{{2x + 2}}{{600}}\)
\(\frac{{x + 2}}{7} + \frac{x}{5} = \frac{{2x + 2}}{6}\)
\(30\left( {x + 2} \right) + 42x = 35\left( {2x + 2} \right)\)
\(30x + 60 + 42x = 70x + 70\)
\(2x = 10\)
\(x = 5\) (nhận)
Vậy khối lượng của chất lỏng thứ hai là 5 kg.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
1.
![1. Khi thiết kế một cái thang gấp, để đảm bảo an toàn người thợ đã làm thêm một thanh ngang để giữ cố định ở chính giữa hai bên thang (như hình vẽ bên) sao cho hai chân thang rộng một khoảng là 80 cm. Hỏi người thợ đã làm thanh ngang đó dài bao nhiêu cm? 2. Cho tam giác \[ABC\] vuông tại \[A,\] đường cao \[AH,\] biết \[AB = 6\,\,{\rm{cm;}}\]\[AC = 8\,\,{\rm{cm}}.\] a) Chứng minh: \[\Delta ABC\] đồng dạng \[\Delta HBA.\] Tính \[HB\,,{\rm{ }}AH.\] b) Lấy điểm \[M\] trên cạnh \[AC\] (\[M\] khác \[A\] và \[C\]), kẻ \[CI\] vuông góc với \[BM\] tại \[I.\]Chứng minh: \[MA \cdot MC = MB \cdot MI.\] c) Xác định vị trí điểm \[M\] thuộc cạnh \[AC\] để diện tích tam giác \[BIC\] đạt giá trị lớn nhất. (ảnh 2)](https://video.vietjack.com/upload2/quiz_source1/2025/07/blobid9-1751334590.png)
Gọi \[MN\] là thanh ngang; \[BC\] là độ rộng giữa hai bên thang.
Thanh ngang \[MN\] nằm chính giữa thang nên \[M;{\rm{ }}N\]là trung điểm \[AB\] và
Suy ra \[MN\] là đường trung bình của tam giác \[ABC.\]
Suy ra \(MN = \frac{1}{2}BC = \frac{1}{2}.80 = 40\,\,{\rm{(cm)}}\).
Vậy người thợ đã làm thanh ngang đó dài \[40{\rm{ cm}}.\]2.
![1. Khi thiết kế một cái thang gấp, để đảm bảo an toàn người thợ đã làm thêm một thanh ngang để giữ cố định ở chính giữa hai bên thang (như hình vẽ bên) sao cho hai chân thang rộng một khoảng là 80 cm. Hỏi người thợ đã làm thanh ngang đó dài bao nhiêu cm? 2. Cho tam giác \[ABC\] vuông tại \[A,\] đường cao \[AH,\] biết \[AB = 6\,\,{\rm{cm;}}\]\[AC = 8\,\,{\rm{cm}}.\] a) Chứng minh: \[\Delta ABC\] đồng dạng \[\Delta HBA.\] Tính \[HB\,,{\rm{ }}AH.\] b) Lấy điểm \[M\] trên cạnh \[AC\] (\[M\] khác \[A\] và \[C\]), kẻ \[CI\] vuông góc với \[BM\] tại \[I.\]Chứng minh: \[MA \cdot MC = MB \cdot MI.\] c) Xác định vị trí điểm \[M\] thuộc cạnh \[AC\] để diện tích tam giác \[BIC\] đạt giá trị lớn nhất. (ảnh 3)](https://video.vietjack.com/upload2/quiz_source1/2025/07/blobid10-1751334646.png)
a) Áp dụng định lý Pythagore vào tam giác \[ABC\] vuông tại \[A,\] ta có: \(A{B^2} + A{C^2} = B{C^2}\)
Suy ra \(BC = \sqrt {A{B^2} + A{C^2}} = \sqrt {{6^2} + {8^2}} = 10\;\,{\rm{(cm)}}\).
Xét hai tam giác \[ABC\] và \[HBA\] có
\(\widehat {AHB} = \widehat {CAB}\;\left( { = 90^\circ } \right)\); \(\widehat {HBA} = \widehat {ABC}\,\;\left( {\widehat B\;\,{\rm{chung}}} \right)\)
Suy ra \(\frac{{HB}}{{AB}} = \frac{{BA}}{{BC}}\) nên \(HB = \frac{{A{B^2}}}{{BC}} = \frac{{{6^2}}}{{10}} = 3,6\,\,{\rm{(cm)}}\).
Áp dụng định lý Pythagore vào tam giác \[ABH\] vuông tại \[H\] có
\(A{B^2} = B{H^2} + A{H^2}\)
Suy ra \(AH = \sqrt {A{B^2} - B{H^2}} = \sqrt {{6^2} - {{3,6}^2}} = 4,8\;\,{\rm{(cm)}}\).
Vậy \[HB = 3,6{\rm{ cm}};{\rm{ }}AH = 4,8{\rm{ cm}}.\]
b) Xét \(\Delta MAB\) và \(\Delta MIC\) có:
\(\widehat {MAB} = \widehat {MIC}\;\left( { = 90^\circ } \right)\); \(\widehat {AMB} = \widehat {IMC}\).
Do đó .
Suy ra .
Khi đó \(\frac{{MA}}{{MI}} = \frac{{MB}}{{MC}}\) hay \(MA \cdot MC = MB \cdot MI\) (đpcm).
c) Diện tích tam giác \(BIC\) là: \({S_{BIC}} = \frac{1}{2}IB \cdot IC\). (1)
Ta có: \[{\left( {IB - {\rm{ }}IC} \right)^2} \ge 0\]
\[I{B^2} + {\rm{ }}I{C^2} - 2IB \cdot IC \ge 0\]
\[I{B^2} + {\rm{ }}I{C^2} \ge 2IB \cdot IC\]
\(IB.IC \le \frac{{I{B^2} + I{C^2}}}{2}\).
Mặt khác, áp dụng định lý Pythagore vào tam giác \(BIC\) vuông tại \[I\] nên
\[B{C^2} = I{B^2} + I{C^2}\]
Thay vào (1) ta suy ra được:
\({S_{BIC}} \le \frac{1}{2} \cdot \frac{{I{B^2} + I{C^2}}}{2} = \frac{{B{C^2}}}{4} = \frac{{10}}{4} = \frac{5}{2}\;\,\left( {{\rm{c}}{{\rm{m}}^{\rm{2}}}} \right)\).
Dấu xảy ra khi và chỉ khi \[IB = IC.\]
Suy ra \(\Delta IBC\) cân tại \[I\] nên tam giác \(IBC\) vuông cân tại \[I\], suy ra \(\widehat {MBC} = 45^\circ .\)
Vậy khi điểm \[M\] thuộc \[AC\] sao cho \(\widehat {MBC} = 45^\circ \) thì diện tích tam giác \(BIC\) đạt giá trị lớn nhất.
Lời giải
a) Trong 50 lần thử, số lần gieo được mặt có số chấm là số chẵn là:
\[9 + 5 + 13 = 27\] (lần).
Vậy số lần gieo được mặt có số chấm là số chẵn là 27.
b) Trong 50 lần thử, số lần gieo được mặt có số chấm là số lẻ là:
\[50 - 27 = 23\] (lần).
Xác suất thực nghiệm của biến cố “Gieo được mặt có số chấm là số lẻ” sau 50 lần thử trên là \[\frac{{23}}{{50}} = 0,46\].
c) Trong 50 lần thử, số lần gieo được mặt có số chấm nhỏ hơn 3 chấm là:
\[8 + 9 + 9 = 26\] (lần).
Xác suất thực nghiệm của biến cố “Gieo được mặt có số chấm nhỏ hơn 3 chấm” sau 50 lần thử trên là \[\frac{{26}}{{50}} = 0,52\].Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.