Trong hai giá trị \(x = 1\) và \(x = 2\), giá trị nào là nghiệm của bất phương trình \(3x - 4 \le 0?\)
Quảng cáo
Trả lời:

Hướng dẫn giải
Đáp số: \(x = 1.\)
Thay \(x = 1\) vào bất phương trình, ta được \(3 \cdot 1 - 4 = - 1 \le 0\) là khẳng định đúng.
Do đó, \(x = 1\) là một nghiệm của bất phương trình đã cho.
Thay \(x = 2\) vào bất phương trình, ta được \(3 \cdot 2 - 4 = 2 \le 0\) là khẳng định sai.
Do đó, \(x = 2\) không là một nghiệm của bất phương trình đã cho.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
a) Xét \[\Delta ABH\] vuông tại \[H,\] ta có: \[AH = AB \cdot \sin B = 4 \cdot \sin 40^\circ \approx 2,57\] (cm); \(BH = AB \cdot \cos B = 4 \cdot \cos 40^\circ \approx 3,06\) (cm). Ta có \(BC = BH + HC\) Suy ra \(HC = BC - BH \approx 4,5 - 3,06 = 1,44\) (cm). |
|
Xét \[\Delta AHC\] vuông tại \[H\], theo định lí Pythagore, ta có:
\[A{C^2} = A{H^2} + H{C^2} \approx 2,{57^2} + 1,{44^2} = 8,6785\]
Suy ra \(AC \approx 2,95\) (cm).
Trong \[\Delta AHC\], ta cũng có: \(\tan C = \frac{{AH}}{{HC}} \approx \frac{{2,57}}{{1,44}} = \frac{{257}}{{144}}.\) Suy ra \(\widehat {C\,} \approx 60^\circ 44'.\)
b) Đặt: \(BC = x\,\,\left( {\rm{m}} \right);\) \(AC = AB + BC = 500 + x\,\,\left( {\rm{m}} \right)\).
Xét \(\Delta ACD\) vuông tại \(C,\) ta có: \[CD = AC \cdot {\rm{tan}}\widehat {CAD} = \left( {500 + x} \right) \cdot {\rm{tan}}34^\circ .\]
Xét \(\Delta BCD\) vuông tại \(C,\) ta có: \(CD = BC \cdot {\rm{tan}}\widehat {CBD} = x \cdot {\rm{tan}}38^\circ \).
Do đó, ta có: \(\;\left( {500 + x} \right) \cdot {\rm{tan}}34^\circ = x \cdot {\rm{tan}}38^\circ \)
\(500 \cdot {\rm{tan}}34^\circ + x \cdot {\rm{tan}}34^\circ = x \cdot {\rm{tan}}38^\circ \)
\(\;x \cdot {\rm{tan}}38^\circ - x \cdot {\rm{tan}}34^\circ = 500 \cdot {\rm{tan}}34^\circ \)
\(\;x \cdot \left( {{\rm{tan}}38^\circ - {\rm{tan}}34^\circ } \right) = 500 \cdot {\rm{tan}}34^\circ \)
\(\;x = \frac{{500 \cdot {\rm{tan}}34^\circ }}{{{\rm{tan}}38^\circ - {\rm{tan}}34^\circ }} \approx 3\,\,158,5\,\,({\rm{m)}}{\rm{.}}\)
Suy ra \(CD = x \cdot {\rm{tan}}38^\circ \approx 3\,\,158,5 \cdot {\rm{tan}}38^\circ \approx 2468\,\,({\rm{m}}).\)
Vậy ngọn núi cao khoảng \(2\,\,468\) mét.
Lời giải
Hướng dẫn giải
1. Gọi \(x\) là số câu trả lời đúng \(\left( {0 \le x \le 12,\,\,x \in \mathbb{N}} \right)\).
Để thí sinh được vào vòng tiếp theo thì ta có
\(20 + 5x - 2\left( {12 - x} \right) \ge 50\)
\(20 + 5x - 24 + 2x \ge 50\)
\(7x - 4 \ge 50\)
\(x \ge \frac{{54}}{7} \approx 7,714.\)
Vậy thí sinh muốn vào vòng tiếp theo cần trả lời đúng 8 câu hỏi trở lên.
2. Theo bài, hiệu giữa nucleotide loại T với loại nucleotide không bổ sung với nó là \(300\) nucleotide nên ta có phương trình: \(T - G = 300\). (1)
Theo nguyên tắc bổ sung: “\[A\] liên kết với \[T\] bằng 2 liên kết hydrogen và \[G\] liên kết với \[C\] bằng 3 liên kết hydrogen” và theo bài, gen B có \(3\,\,600\) liên kết hydrogen nên ta có phương trình \(2T + 3G = 3\,\,600\). (2)
Từ phương trình (1) và phương trình (2), ta có hệ phương trình: \(\left\{ \begin{array}{l}T - G = 300\\2T + 3G = 3\,\,600\end{array} \right.\)
Nhân hai vế của phương trình thứ nhất với 3, ta được hệ \(\left\{ \begin{array}{l}3T - 3G = 900\\2T + 3G = 3\,\,600\end{array} \right.\)
Cộng từng vế hai phương trình của hệ ta được: \(5T = 4\,500,\) suy ra \(T = 900\).
Thay \(T = 900\) vào phương trình \(T - G = 300\), ta được: \(900 - G = 300,\) suy ra \(G = 600.\)
Vậy số nucleotide từng loại gen B là: \(G = C = 600\) và \(A = T = 900\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.