Câu hỏi:

09/07/2025 43 Lưu

Kí hiệu nào sau đây có thể đưa đến khẳng định không chứa

A. \(a \in A.\)

B. \(a \notin A.\)

C. \(A \in a.\)

D. \(A \notin a.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

Kí hiệu \(a \in A\) tức là thuộc hay hiểu là chứa

Kí hiệu \(a \notin A\) tức là không thuộc hay hiểu là không chứa

Kí hiệu ở phương án C và D không đúng với kí hiệu phần tử thuộc/không thuộc tập hợp.

Vậy ta chọn phương án B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\left\{ {1;\,\,3;\,\,5;\,\,7} \right\}.\)

B. \(\left\{ {13;\,\,15;\,\,17;\,\,29} \right\}.\)

C. \(\left\{ {3;\,\,5;\,\,7;\,\,51} \right\}.\)

D. \(\left\{ {5;\,\,11;\,\,17;\,\,23} \right\}.\)

Lời giải

Đáp án đúng là: D

Số 1 không phải là số nguyên tố nên phương án A là sai.

Số 15 chia hết cho 3 và 5 nên không phải là số nguyên tố, do đó phương án B là sai.

Số 51 chia hết cho 3 và 17 nên không phải là số nguyên tố, do đó phương án C là sai.

Các số \(5;\,\,11;\,\,17;\,\,23\) chỉ chia hết cho 1 và chính nó nên là số nguyên tố.

Vậy ta chọn phương án D.

Lời giải

Hướng dẫn giải

Đáp số: 4.

Ta có: \[{\left( {3x - 7} \right)^3}\, = {2^3} \cdot {3^2} + 53\]

\[{\left( {3x - 7} \right)^3}\, = 8 \cdot 9 + 53\]

\[{\left( {3x - 7} \right)^3}\, = 125\]

\[{\left( {3x - 7} \right)^3}\, = {5^3}\]

Suy ra \[3x - 7 = 5\]

\[3x = 12\]

\[x\, = 4.\]

Vậy \[x\, = 4.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP