(1,0 điểm) Cho tam giác \(ABC\) vuông ở \(A\). Gọi \(E\), \(G\), \(F\) lần lượt là trung điểm của \(AB,\,\,BC,\,\,AC.\) Từ \(E\) kẻ đường thẳng song song với \(BF\), đường thẳng này cắt \(GF\) tại \(I\).
a) Chứng minh tứ giác \(BEIF\) là hình bình hành.
b) Tìm điều kiện của tam giác \(ABC\) để tứ giác \(AGCI\) là hình vuông.
Quảng cáo
Trả lời:
Hướng dẫn giải
a)
Vì \(G\), \(F\) lần lượt là trung điểm của \(BC\), \(AC\) nên \(GF\) là đường trung bình của tam giác \(ABC.\)
Suy ra \(GF\,{\rm{//}}\,AB\) nên \[BE\,{\rm{//}}\,IF\].
Tứ giác \(BEIF\)có \[BE\,{\rm{//}}\,IF\] (cmt) và \[BF\,{\rm{//}}\,IE\] (gt).
Do đó, tứ giác \(BEIF\) là hình bình hành.
b) Ta có \(GF\,{\rm{//}}\,AB\) và \(AC \bot AB\) nên \(AC \bot GF\).
Ta thấy \[IF = BE\] (vì tứ giác \(BEIF\) là hình bình hành).
Mà \(GF\) là đường trung bình của tam giác \(ABC\) nên \[GF = \frac{1}{2}AB = BE\].
Do đó, \[GF = IF = BE\] nên \(F\) là trung điểm của \(IG.\)
Tứ giác \(AGCI\) có hai đường chéo \(AC\) và \(IG\) cắt nhau tại trung điểm mỗi đường.
Suy ra, tứ giác \(AGCI\) là hình bình hành.
Hình bình hành \(AGCI\) có hai đường chéo \(AC\) và \(IG\) vuông góc với nhau nên tứ giác \(AGCI\) là hình thoi.
Để tứ giác \(AGCI\) là hình vuông thì \(\widehat {AGC} = 90^\circ \).
Khi đó, tam giác \(ABC\) có \(\widehat {AGC} = 90^\circ \) nên tam giác \(ABC\) vuông cân tại \(A\).
Vậy để tứ giác \(AGCI\) là hình vuông thì tam giác \(ABC\) vuông cân tại \(A\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Thời gian để bạn Hải đi từ \[A\] đến \[C\] là: \[6\] giờ \[30\] phút \( - \,\,6\) giờ \[ = 30\] phút \[ = 0,5\] giờ.
Quãng đường mà bạn Hải đi từ \[A\] đến \[C\] trong \(0,5\) giờ với tốc độ trung bình lên dốc 4 km/h là: \[AC = {S_{A \to C}} = 4 \cdot 0,5 = 2\] (km).
Xét \(\Delta ACB\) có \[CH\] là đường phân giác của \(\widehat {ACB},\) nên ta có:
\(\frac{{HA}}{{HB}} = \frac{{CA}}{{CB}}\) hay \(\frac{{0,32}}{{0,4}} = \frac{2}{{CB}}.\) Suy ra \(CB = \frac{{0,4 \cdot 2}}{{0,32}} = 2,5\) (km).
Thời gian để bạn Hải đi hết quãng đường \(2,5\,\,{\rm{km}}\) với tốc độ trung bình xuống dốc \[10{\rm{ km/h}}\] là: \(\frac{{2,5}}{{10}} = 0,25\) (giờ).
Như vậy, tổng thời gian bạn Hải đi từ \[A\] đến trường \[B\] là:
\[0,5 + 0,25 = 0,75\] (giờ) \[ = 45\] (phút).
Nếu tốc độ trung bình xuống dốc là 10 km/h thì bạn Hải đến trường lúc:
6 giờ + 45 phút = 6 giờ 45 phút.
Vậy nếu tốc độ trung bình xuống dốc là 10 km/h thì bạn Hải đến trường lúc 6 giờ 45 phút.
Lời giải
Hướng dẫn giải
Đáp án: 50.
Xét tam giác \(ABC\) có \(K\) là trung điểm của \(AB\); \(I\) là trung điểm của \(AC\).
Do đó, \(KI\) là đường trung bình của tam giác \(ABC\).
Suy ra \(KI = \frac{1}{2}BC\) hay \(BC = 2KI = 50{\rm{ }}\left( {\rm{m}} \right)\).
Vậy độ dài của \(BC\) bằng \(50{\rm{ m}}{\rm{.}}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.