Cho \(\int {f\left( x \right)} \,{\rm{d}}x = - \cos x + C\). Khẳng định nào dưới đây đúng?
Quảng cáo
Trả lời:
Áp dụng công thức \(\smallint {\rm{sin}}x{\rm{\;d}}x = - {\rm{cos}}x + C\). Suy ra \(f\left( x \right) = {\rm{sin}}x\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn B
\(\int {\left( {2x + 6} \right)dx = {x^2} + 6x + C} \)
Lời giải
Chọn C
Ta có: \[f\left( x \right)\, = \,\left( {x + 1} \right)\left( {x + 2} \right)\left( {x + 3} \right) = \,{x^3} + \,6{x^2}\, + \,11x\, + \,6\]
\[ \Rightarrow \,\,F\left( x \right)\, = \,\int {\left( {{x^3} + \,6{x^2}\, + \,11x\, + \,6} \right)} dx\, = \,\,\frac{{{x^4}}}{4}\, + 2{x^3}\, + \,\frac{{11}}{2}{x^2} + \,6x\, + \,C\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.