Quảng cáo
Trả lời:
Chọn C
Cách 1: \(\int {{e^{2x - 1}}} dx = \int {{e^{ - 1}}.{{\left( {{e^2}} \right)}^x}} dx = {e^{ - 1}}.\frac{{{{\left( {{e^2}} \right)}^x}}}{{\ln {e^2}}} + C = \frac{{{e^{2x - 1}}}}{2} + C\)
Cách 2:\(\int {{{\rm{e}}^{2x - 1}}{\rm{d}}x} = \frac{1}{2}\int {{{\rm{e}}^{2x - 1}}{\rm{d}}\left( {2x - 1} \right) = } \frac{1}{2}{{\rm{e}}^{2x - 1}} + C\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn A
Cách 1: \(\int {f(x){\rm{d}}x} = \int {{3^{ - x}}{\rm{d}}x} = \int {{{\left( {{3^{ - 1}}} \right)}^x}{\rm{d}}(x)} = \frac{{{3^{ - x}}}}{{\ln {3^{ - 1}}}} + C = - \frac{{{3^{ - x}}}}{{\ln 3}} + C\)
Cách 2: \(\int {f(x){\rm{d}}x} = \int {{3^{ - x}}{\rm{d}}x} = - \frac{{{3^{ - x}}}}{{\ln 3}} + C\).
Lời giải
Chọn D
\(F\left( x \right) = \int {{e^{2x}}{\rm{d}}x} = \frac{1}{2}{e^{2x}} + C;\;F\left( 0 \right) = 0 \Rightarrow C = - \frac{1}{2} \Rightarrow F\left( x \right) = \frac{1}{2}{e^{2x}} - \frac{1}{2}\).
Khi đó \(F\left( {\ln 3} \right) = \frac{1}{2}{e^{2\ln 3}} - \frac{1}{2} = 4\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.