Câu hỏi:

21/07/2025 5 Lưu

Hàm số \[f\left( x \right)\] có đạo hàm liên tục trên \[\mathbb{R}\] và: \[f'\left( x \right) = 2{{\rm{e}}^{2x}} + 1,\]\[\forall x,\,f\left( 0 \right) = 2\]. Hàm \[f\left( x \right)\]

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn D

Ta có: \[\int {f'\left( x \right){\rm{d}}} x\]\[ = \int {\left( {{\rm{2}}{{\rm{e}}^{2x}} + 1} \right){\rm{d}}} x\]\[ = {{\rm{e}}^{2x}} + x + C\].

Suy ra \[f\left( x \right) = {{\rm{e}}^{2x}} + x + C\].

Theo bài ra ta có: \[f\left( 0 \right) = 2\]\[ \Rightarrow 1 + C = 2\]\[ \Leftrightarrow C = 1\].

Vậy: \[f\left( x \right) = {{\rm{e}}^{2x}} + x + 1\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Chọn A

Cách 1: \(\int {f(x){\rm{d}}x} = \int {{3^{ - x}}{\rm{d}}x} = \int {{{\left( {{3^{ - 1}}} \right)}^x}{\rm{d}}(x)} = \frac{{{3^{ - x}}}}{{\ln {3^{ - 1}}}} + C = - \frac{{{3^{ - x}}}}{{\ln 3}} + C\)

Cách 2: \(\int {f(x){\rm{d}}x} = \int {{3^{ - x}}{\rm{d}}x} = - \frac{{{3^{ - x}}}}{{\ln 3}} + C\).

Lời giải

Chọn D

\(F\left( x \right) = \int {{e^{2x}}{\rm{d}}x} = \frac{1}{2}{e^{2x}} + C;\;F\left( 0 \right) = 0 \Rightarrow C = - \frac{1}{2} \Rightarrow F\left( x \right) = \frac{1}{2}{e^{2x}} - \frac{1}{2}\).

Khi đó \(F\left( {\ln 3} \right) = \frac{1}{2}{e^{2\ln 3}} - \frac{1}{2} = 4\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP