Sự sản sinh vi rút Zika ngày thứ \(t\) có số lượng là \(N\left( t \right)\) con, biết \(N'\left( t \right) = \frac{{1000}}{t}\) và lúc đầu đám vi rút có số lượng 250.000 con. Tính số lượng vi rút sau 10 ngày.
Sự sản sinh vi rút Zika ngày thứ \(t\) có số lượng là \(N\left( t \right)\) con, biết \(N'\left( t \right) = \frac{{1000}}{t}\) và lúc đầu đám vi rút có số lượng 250.000 con. Tính số lượng vi rút sau 10 ngày.
Quảng cáo
Trả lời:
Chọn D
Ta có :
\(N'\left( t \right) = \frac{{1000}}{t}\)
\( \Rightarrow N\left( t \right) = \int {\frac{{1000}}{t}dt = 1000\ln \left| t \right|} + C\)
\( \Rightarrow N\left( t \right) = 1000\ln \left| t \right| + C\)
Chọn \(t = 1 \Rightarrow N\left( 1 \right) = 250000 \Rightarrow C = 250000\)
\( \Rightarrow N\left( t \right) = 1000\ln \left| t \right| + 250000\)
số lượng vi rút sau 10 ngày là: \(N\left( {10} \right) = 1000.\ln 10 + 250000 \approx 252302\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn B
Ta có: \(\int f (x)dx = \int {\left( {{e^x} + 2} \right)} dx = {e^x} + 2x + C\)
Lời giải
Chọn D
\(F\left( x \right) = \int {{e^{2x}}{\rm{d}}x} = \frac{1}{2}{e^{2x}} + C;\;F\left( 0 \right) = 0 \Rightarrow C = - \frac{1}{2} \Rightarrow F\left( x \right) = \frac{1}{2}{e^{2x}} - \frac{1}{2}\).
Khi đó \(F\left( {\ln 3} \right) = \frac{1}{2}{e^{2\ln 3}} - \frac{1}{2} = 4\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.