Câu hỏi:

11/07/2024 8,486

Cho tam giác ABC với hai cạnh BC = 1cm, AC = 7cm.

Hãy tìm độ dài cạnh AB, biết rằng độ dài này là một số nguyên (cm). Tam giác ABC là tam giác gì?

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Theo bất đẳng thức tam giác ABC ta có:

AC – BC < AB < AC + BC

Thay BC = 1cm, AC = 7cm, ta được:

7 – 1 < AB < 7 + 1

6 < AB < 8 (1)

Vì độ dài AB là một số nguyên (cm) thỏa mãn (1) nên AB = 7cm

Do đó ΔABC cân tại A vì AB = AC = 7cm.

* Cách dựng tam giác ABC

- Vẽ BC = 1cm

- Dựng đường tròn tâm B bán kính 7cm ; đường tròn tâm C bán kính 7cm. Hai đường tròn cắt nhau tại A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC và M là một điểm nằm trong tam giác. Gọi I là giao điểm của đường thẳng BM và cạnh AC.

So sánh MA với MI + IA, từ đó chứng minh MA + MB < IB + IA.

Xem đáp án » 11/07/2024 18,196

Câu 2:

Dựa vào bất đẳng thức tam giác, kiểm tra xem bộ ba nào trong các bộ ba đoạn thẳng có độ dài cho sau đây không thể là ba cạnh của một tam giác. Trong những trường hợp còn lại, hãy thử dựng tam giác có độ dài ba cạnh như thế:

3cm, 4cm, 6cm

Xem đáp án » 11/07/2024 15,069

Câu 3:

Em hãy giải thích vì sao không có tam giác với ba cạnh có độ dài 1cm, 2cm, 4cm (xem câu hỏi 1 trang 61).

Xem đáp án » 11/07/2024 4,743

Câu 4:

Hãy thử vẽ tam giác với các cạnh có độ dài 1cm, 2cm, 4cm.Em có vẽ được không ?

Xem đáp án » 11/07/2024 3,673

Câu 5:

Dựa vào bất đẳng thức tam giác, kiểm tra xem bộ ba nào trong các bộ ba đoạn thẳng có độ dài cho sau đây không thể là ba cạnh của một tam giác. Trong những trường hợp còn lại, hãy thử dựng tam giác có độ dài ba cạnh như thế:

 2cm, 3cm, 6cm

Xem đáp án » 11/07/2024 2,229

Câu 6:

Dựa vào hình 17, hãy viết giả thiết, kết luận của định lý

Để học tốt Toán 7 | Giải toán lớp 7

Xem đáp án » 11/07/2024 2,041

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store