Một vật dao động điều hòa có chu kì 2 s, biên độ 10 cm. Khi vật cách vị trí cân bằng 5 cm, tốc độ của nó bằng bao nhiêu? (Đơn vị: cm/s).
Quảng cáo
Trả lời:

Từ công thức: \({x^2} + \frac{{{v^2}}}{{{\omega ^2}}} = {A^2}\) suy ra:
\(\left| v \right| = \omega \sqrt {{A^2} - {x^2}} = \frac{{2\pi }}{T}\sqrt {{A^2} - {x^2}} = \frac{{2\pi }}{2}\sqrt {{{10}^2} - {5^2}} \approx 27,21\left( {cm/s} \right)\)
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là A
Ta có, khoảng thời gian: \[\Delta t = \frac{2}{3} = \frac{T}{2} + \frac{T}{6}\].
Vậy \[\overline {{v_{max}}} = \frac{{2A + S_{\frac{T}{6}}^{max}}}{{\Delta t}} = \frac{{2A + 2A\sin \left( {\frac{{\omega T}}{{2.6}}} \right)}}{{\Delta t}} = \frac{{2.10 + 2.10\sin \left( {{{30}^0}} \right)}}{{\frac{2}{3}}} = 45\]cm/s
Lời giải
Đáp án đúng là: C
Phương trình dao động điều hòa: \[x = A\cos \left( {\omega t + \varphi } \right)\]
Ta có, pha dao động ở thời điểm t là: \[\left( {\omega t + \varphi } \right)\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.