Cho tứ giác \(ABCD,\) gọi \(O\) là giao điểm của hai đường chéo.
a) \(O\) là giao điểm của \(AB\) và \(CD.\)
b) \(OA + OB > AB.\)
c) \(OC + OD = CD.\)
d) \(AC + BD = AB + CD.\)
Cho tứ giác \(ABCD,\) gọi \(O\) là giao điểm của hai đường chéo.
a) \(O\) là giao điểm của \(AB\) và \(CD.\)
b) \(OA + OB > AB.\)
c) \(OC + OD = CD.\)
d) \(AC + BD = AB + CD.\)
Quảng cáo
Trả lời:

a) Sai.
Tứ giác \(ABCD\) có hai đường chéo là \(AC\) và \(BD.\) Do đó, \(O\) là giao điểm của \(AC\) và \(BD.\)
b) Đúng.
Áp dụng bất đẳng thức vào tam giác \(AOB\) ta có: \(OA + OB > AB.\)
c) Sai.
Áp dụng bất đẳng thức vào tam giác \(COD\) ta có: \(OC + OD > CD.\)
d) Sai.
Ta có: \(OA + OB > AB,\;OC + OD > CD\) nên:
\(OA + OB + OC + OD > AB + CD\)
\(\left( {OA + OC} \right) + \left( {OB + OD} \right) > AB + CD\)
\(AC + BD > AB + CD.\)
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: B
Câu 2
Lời giải
Đáp án đúng là: A
Tứ giác \(ABCD\) có: \[\widehat A + \widehat B + \widehat C + \widehat D = 360^\circ .\]
Do đó, \[\widehat C = 360^\circ - \widehat A - \widehat B - \widehat D = 360^\circ - 80^\circ - 120^\circ - 110^\circ = 50^\circ .\] Vậy \[\widehat C = 50^\circ .\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


