Câu hỏi:

10/09/2025 9 Lưu

Phần III. Trắc nghiệm trả lời ngắn

(Gồm 5 câu hỏi, hãy viết câu trả lời/đáp án vào bài làm mà không cần trình bày lời giải chi tiết)

Cho tứ giác \(ABCD\)\(\widehat A,\;\widehat B,\;\widehat C,\;\widehat D\) lần lượt tỉ lệ với \(2;\;3;\;6;\;7.\) Số đo \(\widehat C\) bằng bao nhiêu độ?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án: \(120\)

\(\widehat A,\;\widehat B,\;\widehat C,\;\widehat D\) lần lượt tỉ lệ với \(2;\;3;\;6;\;7\) nên \(\frac{{\widehat A}}{2} = \frac{{\widehat B}}{3} = \frac{{\widehat C}}{6} = \frac{{\widehat D}}{7}.\)

Theo tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{{\widehat A}}{2} = \frac{{\widehat B}}{3} = \frac{{\widehat C}}{6} = \frac{{\widehat D}}{7} = \frac{{\widehat A + \widehat B + \widehat C + \widehat D}}{{2 + 3 + 6 + 7}} = \frac{{360^\circ }}{{18}} = 20^\circ .\)

Do đó, \(\widehat C = 6 \cdot 20^\circ = 120^\circ .\) Vậy \(\widehat C = 120^\circ .\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng.

\(AB = AC\) nên \(A\) thuộc đường trung trực của đoạn thẳng \(BC.\)

\(DB = CD\) nên \(D\) thuộc đường trung trực của đoạn thẳng \(BC.\)

Do đó, hai điểm \(A,\;D\) thuộc đường trung trực của đoạn thẳng \(BC.\) Hay \(AD\) là đường trung trực của đoạn thẳng \(BC.\) Do đó, \(AD \bot BC.\) Suy ra, tứ giác \(ABDC\) có hai đường chéo vuông góc với nhau.

b) Sai.

Tứ giác \(ABDC\) có: \[\widehat {CAB} + \widehat {DBA} + \widehat {ACD} + \widehat {CDB} = 360^\circ \]

Do đó: \(\widehat {ABD} + \widehat {ACD} = 360^\circ - \widehat {BAC} - \widehat {BDC} = 360^\circ - 90^\circ - 30^\circ = 240^\circ .\) Vậy \(\widehat {ABD} + \widehat {ACD} = 240^\circ .\)

c) Đúng.

\(\Delta DCA\) \(\Delta DBA\) có: \(AC = AB,\;DC = DB,\;AD\) chung. Do đó, \(\Delta DCA = \Delta DBA\;\left( {c - c - c} \right).\)

d) Sai.

\(\Delta DCA = \Delta DBA\;\left( {cmt} \right)\) nên \(\widehat {ACD} = \widehat {ABD}.\)

\(\widehat {ABD} + \widehat {ACD} = 240^\circ \) nên \(\widehat {ABD} + \widehat {ABD} = 240^\circ \) hay \(2\widehat {ABD} = 240^\circ .\) Suy ra \(\widehat {ABD} = 120^\circ .\)

Vậy \(\widehat {ABD} = 120^\circ .\)

Câu 2

Lời giải

Đáp án đúng là: D

Tứ giác \(ABCD\) có: \[\widehat A + \widehat B + \widehat C + \widehat D = 360^\circ .\]

Do đó, \[\widehat A + \widehat A + \widehat A + \widehat A = 360^\circ \], suy ra \(4\widehat A = 360^\circ \) nên \[\widehat A = 360^\circ :4 = 90^\circ .\] Vậy \[\widehat A = 90^\circ .\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP