Cho tứ giác \(ABCD\) có hai tổng độ dài hai đường chéo bằng \(20\;{\rm{cm}}\) và \(AC - BD = 10\;{\rm{cm}}{\rm{.}}\) Độ dài đường chéo \(AC\) gấp bao nhiêu lần độ dài đường chéo \(BD?\)
Cho tứ giác \(ABCD\) có hai tổng độ dài hai đường chéo bằng \(20\;{\rm{cm}}\) và \(AC - BD = 10\;{\rm{cm}}{\rm{.}}\) Độ dài đường chéo \(AC\) gấp bao nhiêu lần độ dài đường chéo \(BD?\)
Quảng cáo
Trả lời:
Đáp án: \(3\)
Vì \(AC - BD = 10\;{\rm{cm}}\) nên \(AC = 10 + BD.\)
Vì hai độ dài tổng hai đường chéo bằng \(20\;{\rm{cm}}\) nên \(AC + BD = 20\;{\rm{cm}}{\rm{.}}\)
Suy ra \(10 + BD + BD = 20\) hay \(2BD = 10,\) suy ra \(BD = 5\;{\rm{cm,}}\) do đó, \(AC = 10 + 5 = 15\;\left( {{\rm{cm}}} \right).\)
Vậy độ dài đường chéo \(AC\) gấp \(3\) lần độ dài đường chéo \(BD.\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: B
Câu 2
Lời giải
Đáp án đúng là: A
Tứ giác \(ABCD\) có: \[\widehat A + \widehat B + \widehat C + \widehat D = 360^\circ .\]
Do đó, \[\widehat C = 360^\circ - \widehat A - \widehat B - \widehat D = 360^\circ - 80^\circ - 120^\circ - 110^\circ = 50^\circ .\] Vậy \[\widehat C = 50^\circ .\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



