Phần I. Trắc nghiệm nhiều phương án lựa chọn
(Gồm 10 câu hỏi, hãy chọn phương án đúng duy nhất)
Trong các hình dưới đây, hình nào là hình bình hành?

Phần I. Trắc nghiệm nhiều phương án lựa chọn
(Gồm 10 câu hỏi, hãy chọn phương án đúng duy nhất)
Trong các hình dưới đây, hình nào là hình bình hành?

Quảng cáo
Trả lời:
Đáp án đúng là: C
Hình bình hành là hình \(3.\)
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: C

Vì tứ giác \(ABCD\) là hình bình hành nên \(\widehat {BCD} = \widehat {BAD} = 70^\circ .\) Vậy \(\widehat {BCD} = 70^\circ .\)
Lời giải

a) Đúng.
Tứ giác \(ABCD\) có: \(AB\,{\rm{//}}\,CD,\;AB = CD\) nên tứ giác \(ABCD\) là hình bình hành.
b) Sai.
Vì tứ giác \(ABCD\) là hình bình hành nên \(AD\,{\rm{//}}\,BC.\)
Kẻ \(Bk\) là tia đối của tia \(BA.\) Ta có: \(\widehat {ABC} + \widehat {CBk} = 180^\circ \) (hai góc kề bù).
Vì \(AD\,{\rm{//}}\,BC\) nên \(\widehat A = \widehat {CBk}\) (hai góc đồng vị). Do đó, \(\widehat {ABC} + \widehat A = 180^\circ .\)
c) Sai.
Theo giả thiết: \(\widehat A - \widehat {ABC} = 50^\circ \) nên \(\widehat {ABC} = \widehat A - 50^\circ .\)
Theo phần b ta có: \(\widehat {ABC} + \widehat A = 180^\circ \) nên \(\widehat A - 50^\circ + \widehat A = 180^\circ .\) Suy ra \(\widehat A = 115^\circ .\)
Vì tứ giác \(ABCD\) là hình bình hành nên \(\widehat C = \widehat A = 115^\circ .\) Vậy \(\widehat C = 115^\circ .\)
d) Sai.
Ta có: \(\widehat {ABC} = \widehat A - 50^\circ = 115^\circ - 50^\circ = 65^\circ .\)
Vì tứ giác \(ABCD\) là hình bình hành nên \(\widehat D = \widehat B = 65^\circ .\) Vậy \(\widehat D = 65^\circ .\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
