Chọn khẳng định đúng:
Quảng cáo
Trả lời:
Đáp án đúng là: C
Hình thang có hai góc kề một đáy bằng nhau là hình thang cân.
Hình thang có hai cạnh bên bằng nhau chưa chắc là hình bình hành. Ví dụ minh họa:

Hình thang có hai cạnh bên song song là hình bình hành.
Do đó, chọn đáp án C.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: C

Vì tứ giác \(ABCD\) là hình bình hành nên \(\widehat {BCD} = \widehat {BAD} = 70^\circ .\) Vậy \(\widehat {BCD} = 70^\circ .\)
Lời giải

a) Đúng.
Tứ giác \(ABCD\) có: \(AB\,{\rm{//}}\,CD,\;AB = CD\) nên tứ giác \(ABCD\) là hình bình hành.
b) Sai.
Vì tứ giác \(ABCD\) là hình bình hành nên \(AD\,{\rm{//}}\,BC.\)
Kẻ \(Bk\) là tia đối của tia \(BA.\) Ta có: \(\widehat {ABC} + \widehat {CBk} = 180^\circ \) (hai góc kề bù).
Vì \(AD\,{\rm{//}}\,BC\) nên \(\widehat A = \widehat {CBk}\) (hai góc đồng vị). Do đó, \(\widehat {ABC} + \widehat A = 180^\circ .\)
c) Sai.
Theo giả thiết: \(\widehat A - \widehat {ABC} = 50^\circ \) nên \(\widehat {ABC} = \widehat A - 50^\circ .\)
Theo phần b ta có: \(\widehat {ABC} + \widehat A = 180^\circ \) nên \(\widehat A - 50^\circ + \widehat A = 180^\circ .\) Suy ra \(\widehat A = 115^\circ .\)
Vì tứ giác \(ABCD\) là hình bình hành nên \(\widehat C = \widehat A = 115^\circ .\) Vậy \(\widehat C = 115^\circ .\)
d) Sai.
Ta có: \(\widehat {ABC} = \widehat A - 50^\circ = 115^\circ - 50^\circ = 65^\circ .\)
Vì tứ giác \(ABCD\) là hình bình hành nên \(\widehat D = \widehat B = 65^\circ .\) Vậy \(\widehat D = 65^\circ .\)
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

