Cho tam giác \(ABO\) vuông tại \(O.\) Trên tia đối của tia \(OB\) lấy điểm \(D\) sao cho \(OB = OD.\) Lấy điểm \(C\) đối xứng với điểm \(A\) qua \(O.\) Biết rằng chu vi tứ giác \(ABCD\) bằng \[40\;{\rm{cm}}{\rm{.}}\]
a) Tứ giác \(ABCD\) là hình thoi.
b) \(AB = 8\;{\rm{cm}}.\)
c) \(\widehat {DAB} = 3\widehat {ACB}.\)
d) Điều kiện để tam giác \(ABC\) đều là \(\widehat {DAB} = 120^\circ .\)
Cho tam giác \(ABO\) vuông tại \(O.\) Trên tia đối của tia \(OB\) lấy điểm \(D\) sao cho \(OB = OD.\) Lấy điểm \(C\) đối xứng với điểm \(A\) qua \(O.\) Biết rằng chu vi tứ giác \(ABCD\) bằng \[40\;{\rm{cm}}{\rm{.}}\]
a) Tứ giác \(ABCD\) là hình thoi.
b) \(AB = 8\;{\rm{cm}}.\)
c) \(\widehat {DAB} = 3\widehat {ACB}.\)
d) Điều kiện để tam giác \(ABC\) đều là \(\widehat {DAB} = 120^\circ .\)
Quảng cáo
Trả lời:

a) Đúng.
Vì tam giác \(ABO\) vuông tại \(O\) nên \(AO \bot BO\) tại \(O\) hay \(AC \bot BD\) tại \(O.\)
Vì \(C\) đối xứng với điểm \(A\) qua \(O\) nên \(O\) là trung điểm của \(AC.\)
Tứ giác \(ABCD\) có: \(O\) là giao điểm của \(AC,\;BD.\) Mà \(O\) vừa là trung điểm của \(BD\) vừa là trung điểm của \(AC\) nên tứ giác \(ABCD\) là hình bình hành.
Lại có: \(AC \bot BD\) tại \(O\) nên tứ giác \(ABCD\) là hình thoi.
b) Sai.
Vì chu vi hình thoi \(ABCD\) bằng \[40\;{\rm{cm}}\] nên \(4AB = 40\) suy ra \(AB = 10\;{\rm{cm}}.\) Vậy \(AB = 10\;{\rm{cm}}.\)
c) Sai.
Vì tứ giác \(ABCD\) là hình thoi nên \(AB = BC.\) Do đó tam giác \(ABC\) cân tại \(B.\)
Do đó, \(\widehat {ACB} = \widehat {CAB}.\)
Vì tứ giác \(ABCD\) là hình thoi nên \(AC\) là tia phân giác của \(\widehat {DAB}.\) Do đó, \(\widehat {DAB} = 2\widehat {CAB}.\)
Vậy \(\widehat {DAB} = 2\widehat {ACB}.\)
d) Đúng.
Nếu \(\widehat {DAB} = 120^\circ \) thì:
Vì tứ giác \(ABCD\) là hình thoi nên \(\widehat {BAD} = \widehat {DCB} = 120^\circ ,\;\widehat {ADC} = \widehat {ABC}.\)
Lại có: \(\widehat {BAD} + \widehat {DCB} + \widehat {ADC} + \widehat {ABC} = 360^\circ \)
\(120^\circ + 120^\circ + \widehat {ABC} + \widehat {ABC} = 360^\circ \)
\(2\widehat {ABC} = 120^\circ \)
\(\widehat {ABC} = 60^\circ .\)
Tam giác \(ABC\) cân tại \(B\) có \(\widehat {ABC} = 60^\circ \) nên tam giác \(ABC\) đều.
Vậy điều kiện để tam giác \(ABC\) đều là \(\widehat {DAB} = 120^\circ .\)
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: \(45\)
Vì tứ giác \(ABCD\) là hình vuông nên \(AB = BC = CD = DA,\;\widehat A = \widehat B = \widehat C = \widehat D = 90^\circ .\)
Vì \(AB = BC = CD = DA,\;AE = BF = CG = HD\) nên:
\(AB - AE = BC - BF = CD - CG = DA - HD\) hay \(EB = FC = DG = AH.\)
Tam giác \(AEH\) và tam giác \(BFE\) có: \(\widehat A = \widehat B = 90^\circ ,\;AE = BF,\;AH = EB.\)
Suy ra: \(\Delta AEH = \Delta BFE\;\left( {c - g - c} \right)\) nên \(HE = EF.\)
Chứng minh tương tự ta có:
+ \(\Delta CGF = \Delta BFE\;\left( {c - g - c} \right)\) nên \(GF = EF.\)
+ \(\Delta CGF = \Delta DHG\;\left( {c - g - c} \right)\) nên \(GF = HG.\)
+ \(\Delta AEH = \Delta DHG\;\left( {c - g - c} \right)\) nên \(HE = HG.\)
Do đó, \(HE = EF = FG = GH.\) Suy ra, tứ giác \(HEFG\) là hình thoi \(\left( 1 \right).\)
Vì \(\Delta AEH = \Delta BFE\;\left( {cmt} \right)\) nên \(\widehat {AHE} = \widehat {BEF}.\)
Ta có: \(\widehat {AHE} + \widehat {HEA} = 90^\circ \) nên \(\widehat {FEB} + \widehat {HEA} = 90^\circ .\)
Mà \(\widehat {HEA} + \widehat {HEF} + \widehat {FEB} = 180^\circ \) nên \(\widehat {HEF} = 180^\circ - \left( {\widehat {FEB} + \widehat {HEA}} \right) = 90^\circ \;\left( 2 \right).\)
Từ \(\left( 1 \right),\;\left( 2 \right)\) ta có tứ giác \(HEFG\) là hình vuông. Do đó, \(EG\) là tia phân giác của \(\widehat {HEF}.\)
Suy ra: \(\widehat {HEG} = \frac{1}{2}\widehat {HEF} = \frac{1}{2} \cdot 90^\circ = 45^\circ .\) Vậy \(\widehat {HEG} = 45^\circ .\)
Lời giải
Đáp án: \(6\)
Vì tứ giác \(ABCD\) là hình chữ nhật nên \(\widehat {ABM} = \widehat {BAN} = \widehat C = 90^\circ ,\;AB = CD.\)
Vì \(M\) là trung điểm của \(BC\) nên \(BM = MC.\)
Tam giác \(ABM\) và tam giác \(DCM\) có: \(\widehat {ABM} = \widehat C = 90^\circ ,\;AB = CD,\;BM = MC.\)
Do đó, \(\Delta ABM = \Delta DCM\left( {c - g - c} \right)\) nên \(AM = DM.\)
Suy ra, \(\Delta ADM\) cân tại \(M.\) Do đó, \(MN\) là đường trung tuyến đồng thời là đường cao của \(\Delta ADM.\)
Do đó, \(\widehat {ANM} = 90^\circ .\)
Tứ giác \(ANMB\) có: \(\widehat {ABM} = \widehat {BAN} = \widehat {ANM} = 90^\circ \) nên tứ giác \(ANMB\) là hình chữ nhật \(\left( 1 \right).\)
Suy ra: \(\widehat {BMN} = 90^\circ \;\left( 2 \right).\)
Vì \(AM \bot MD\) nên \(\widehat {AMD} = 90^\circ .\)
Vì \(MN\) là đường trung tuyến đồng thời là đường phân giác của \(\Delta ADM\) nên
\(\widehat {AMN} = \frac{1}{2}\widehat {AMD} = \frac{1}{2} \cdot 90^\circ = 45^\circ \;\left( 3 \right).\)
Từ \(\left( 2 \right),\;\left( 3 \right)\) ta có: \(MA\) là tia phân giác của \(\widehat {BMN}\;\left( 4 \right).\)
Từ \(\left( 1 \right),\;\left( 4 \right)\) ta có: Tứ giác \(ANMB\) là hình vuông. Do đó, \(BN = AM = 6\;{\rm{cm}}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.