PHẦN I. Câu trắc nghiệm nhiều phương án lựa chọn. Thí sinh trả lời từ câu 1 đến câu 10. Mỗi câu hỏi thí sinh chỉ lựa chọn một phương án.
Ban đầu có 10 g \(_{88}^{226}{\rm{Ra}}\) là chất phóng xạ có chu kì bán rã 3,8 ngày. Khối lượng chất phóng xạ còn lại sau 22,8 ngày
PHẦN I. Câu trắc nghiệm nhiều phương án lựa chọn. Thí sinh trả lời từ câu 1 đến câu 10. Mỗi câu hỏi thí sinh chỉ lựa chọn một phương án.
Ban đầu có 10 g \(_{88}^{226}{\rm{Ra}}\) là chất phóng xạ có chu kì bán rã 3,8 ngày. Khối lượng chất phóng xạ còn lại sau 22,8 ngày
Quảng cáo
Trả lời:

Khối lượng chất phóng xạ còn lại sau 22,8 ngày là
\({\rm{m}} = {{\rm{m}}_0} \cdot {2^{ - \frac{{\rm{t}}}{{\rm{T}}}}} = {10.2^{ - \frac{{22,8}}{{3,8}}}} = 0,15625\;{\rm{g}}\). Chọn C.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Phương trình phóng xạ \({\beta ^ - }\)có dạng: \(_{54}^{133}{\rm{Xe}} \to _{\rm{Z}}^{\rm{A}}{\rm{X}} + _{ - 1}^0{\rm{e}} + _0^0\widetilde {\rm{v}}\)
Do điện tích và số nucleon được bảo toàn trong các phản ứng hạt nhân nên:
\(Z = 55{\rm{ v\`a }}A = 133\). Vậy hạt nhân sản phẩm phân rã là \(_{55}^{133}{\rm{Cs}} = > \) Phát biểu a) Đúng.
b) Hằng số phóng xạ của xenon là
\({\beta ^ - }\)\(\lambda = \frac{{\ln 2}}{T} = \frac{{\ln 2}}{{5,24.24.3600}} = {1,53.10^{ - 6}}\;{{\rm{s}}^{ - 1}}\)\( \Rightarrow \) Phát biểu b) Sai.
c) Số nguyên tử xenon trong mẫu mới sản xuất là
\({N_0} = \frac{{{H_0}}}{\lambda } = \frac{{4,25 \cdot {{10}^9}\;{\rm{Bq}}}}{{1,53 \cdot {{10}^{ - 6}}\;{{\rm{s}}^{ - 1}}}} = 2,78 \cdot {10^{15}}\)nguyên tử\( \Rightarrow \) Phát biểu c) Đúng.
d) Độ phóng xạ của mẫu khi bệnh nhân sử dụng là
\(H = {H_0}{2^{ - \frac{t}{T}}} = \left( {4,25 \cdot {{10}^9}\;{\rm{Bq}}} \right) \cdot {2^{ - \frac{{3,00}}{{5,24}}}} = 2,86 \cdot {10^9}\;{\rm{Bq}}\)\( \Rightarrow \) Phát biểu d) Sai.
Đáp án: a) Đúng; b) Sai; c) Đúng; d) Sai.
Lời giải
Thời điềm ban đầu có \({N_{0\;{\rm{A}}}}\) và \({N_{0{\rm{B}}}}\) hạt nhân A và B trong mẫu: \(\frac{{{N_{0A}}}}{{{N_{0B}}}} = 5.\)
Sau 2,0 giờ, số nguyên tử mỗi đồng vị có trong mẫu là \({N_A} = {N_{0A}}{2^{ - \frac{t}{{{T_A}}}}}\) và \({N_B} = {N_{0B}}{2^{ - \frac{t}{{{T_B}}}}}.\)
Theo đề bài:
\(\frac{{{N_A}}}{{{N_B}}} = \frac{{{N_{0A}}{2^{ - \frac{t}{{{T_A}}}}}}}{{{N_{0B}}{2^{ - \frac{t}{{{T_B}}}}}}} = \frac{{{N_{0A}}}}{{{N_{0B}}}}{2^{t\left( {\frac{1}{{{T_B}}} - \frac{1}{{{T_A}}}} \right)}} = 1 \Rightarrow {2^{t.\left( {\frac{1}{{{T_B}}} - \frac{1}{{{T_A}}}} \right)}} = \frac{1}{5} \Rightarrow t\left( {\frac{1}{{{T_B}}} - \frac{1}{{{T_A}}}} \right) = {\log _2}\left( {\frac{1}{5}} \right)\)
Thay số: \(t = 2,0\) giờ và \({T_{\rm{A}}} = 0,50\) giờ ta tìm được \({T_{\rm{B}}} = 1,2\) giờ.
Đáp án: 1,2 giờ.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.