Câu hỏi:

10/09/2025 113 Lưu

Đường cong trong hình vẽ dưới đây là đồ thị của hàm số nào?

Đường cong trong hình vẽ dưới đây là đồ thị của hàm số nào? (ảnh 1)

A. \(y = \frac{{2x - 1}}{{x + 1}}\).                                       
B. \(y = \frac{{2x + 1}}{{x + 1}}\).     
C. \(y = \frac{{2x - 1}}{{x - 1}}\).                                       
D. \(y = \frac{{2x + 1}}{{x - 1}}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Từ đồ thị đã cho, ta thấy đồ thị hàm số có tiệm cận ngang là đường thẳng \(y = 2\) và tiệm cận đứng là đường thẳng \(x = - 1\) nên loại ngay 2 hàm số \(y = \frac{{2x - 1}}{{x - 1}}\)\(y = \frac{{2x + 1}}{{x - 1}}\).

Mặt khác đồ thị hàm số đi qua điểm \(\left( {0;\;1} \right)\) nên ta có hàm số cần tìm là \(y = \frac{{2x + 1}}{{x + 1}}\). Chọn B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(y = \frac{{{x^2} - 3}}{{x - 2}}\).                                                
B. \(y = \frac{{{x^2} - 4x + 2}}{{x - 2}}\).
C.\(y = \frac{{{x^2} - x}}{{x - 2}}\).                                                
D. \(y = \frac{{{x^2} - 4x + 5}}{{x - 2}}\).

Lời giải

Dựa vào bảng biến thiên ta thấy

Tiệm cận đứng là đường thẳng \(x = 2\).

Đạo hàm \(y' > 0\) với mọi \(x \ne 2\)

+) Xét đáp án A: Có \(y' = \frac{{2x\left( {x - 2} \right) - \left( {{x^2} - 3} \right)}}{{{{\left( {x - 2} \right)}^2}}} = \frac{{{x^2} - 4x + 3}}{{{{\left( {x - 2} \right)}^2}}}\).

+) Xét đáp án B: Có \(y' = \frac{{\left( {2x - 4} \right)\left( {x - 2} \right) - \left( {{x^2} - 4x + 2} \right)}}{{{{\left( {x - 2} \right)}^2}}} = \frac{{{x^2} - 4x + 6}}{{{{\left( {x - 2} \right)}^2}}} = \frac{{{{\left( {x - 2} \right)}^2} + 2}}{{{{\left( {x - 2} \right)}^2}}} > 0,\forall x \ne 2\).

+) Xét đáp án C: Có \(y' = \frac{{\left( {2x - 1} \right)\left( {x - 2} \right) - \left( {{x^2} - x} \right)}}{{{{\left( {x - 2} \right)}^2}}} = \)\( = \frac{{{x^2} - 4x + 2}}{{{{\left( {x - 2} \right)}^2}}}\).

+) Xét đáp án D: Có \(y' = \frac{{\left( {2x - 4} \right)\left( {x - 2} \right) - \left( {{x^2} - 4x + 5} \right)}}{{{{\left( {x - 2} \right)}^2}}} = \frac{{{x^2} - 4x + 3}}{{{{\left( {x - 2} \right)}^2}}}\). Chọn B.

Câu 2

A. \[ - 9{\rm{m/}}{{\rm{s}}^{\rm{2}}}\].                            
B. \[9{\rm{m/}}{{\rm{s}}^{\rm{2}}}\].                                    
C. \[ - 12{\rm{m/}}{{\rm{s}}^{\rm{2}}}\].                                     
D. \[12{\rm{m/}}{{\rm{s}}^{\rm{2}}}\].

Lời giải

Ta có: \(S = {t^3} - 3{t^2} - 9t + 2\)

Khi vận tốc bị triệt tiêu tức \(v = 0 \Leftrightarrow 3{t^2} - 6t - 9 = 0 \Leftrightarrow \left[ \begin{array}{l}t = - 1 < 0\\t = 3\left( {tm} \right)\end{array} \right.\).

Khi đó gia tốc tại thời điểm vận tốc bị triệt tiêu là \(a = 6.3 - 6 = 12\left( {{\rm{m/}}{{\rm{s}}^{\rm{2}}}} \right)\). Chọn D.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(1418000\) đồng.                                                             
B. \(1403000\) đồng.        
C. \(1402000\) đồng.                                                             
D. \(1417000\) đồng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[y = {\rm{ }}{x^4} - 2{x^2}\].                                        
B. \[y = {x^{\rm{3}}} - 3x - 1\].         
C. \[y = - {x^{\rm{3}}} + 3x\].                                        
D. \[y = {x^3} - 3x\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP