Câu hỏi:

10/09/2025 22 Lưu

Cho hàm số \[y = a{x^3} + b{x^2} + cx + d\] có đồ thị như hình vẽ bên dưới.

Mệnh đề nào dưới đây đúng? (ảnh 1)
Mệnh đề nào dưới đây đúng?

A. \[a < 0,b > 0,c > 0,d > 0\].                                               
B. \[a < 0,b < 0,c = 0,d > 0\].
C. \[a > 0,b < 0,c > 0,d > 0\].                                               
D. \[a < 0,b > 0,c = 0,d > 0\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Từ hình dáng của đồ thị ta có: \(a < 0\).

Đồ thị cắt trục \(Oy\)tại điểm \(\left( {0;d} \right)\) ở phía trên trục \(Ox \Rightarrow d > 0\).

Vì hàm số có một điểm cực trị bằng \(0\), một điểm cực trị dương nên phương trình \(y' = 3a{x^2} + 2bx + c = 0\) có hai nghiệm phân biệt \({x_1},{x_2}\)thỏa mãn: \({x_1} = 0,\,{x_2} > 0\) \[ \Rightarrow \left\{ \begin{array}{l}{x_1} = 0\\{x_1} + {x_2} > 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}c = 0\\ - \frac{{2b}}{{3a}} > 0\left( {a < 0} \right)\end{array} \right. \Rightarrow \left\{ \begin{array}{l}c = 0\\b > 0\\a < 0\end{array} \right.\]. Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(y = \frac{{{x^2} - 3}}{{x - 2}}\).                                                
B. \(y = \frac{{{x^2} - 4x + 2}}{{x - 2}}\).
C.\(y = \frac{{{x^2} - x}}{{x - 2}}\).                                                
D. \(y = \frac{{{x^2} - 4x + 5}}{{x - 2}}\).

Lời giải

Dựa vào bảng biến thiên ta thấy

Tiệm cận đứng là đường thẳng \(x = 2\).

Đạo hàm \(y' > 0\) với mọi \(x \ne 2\)

+) Xét đáp án A: Có \(y' = \frac{{2x\left( {x - 2} \right) - \left( {{x^2} - 3} \right)}}{{{{\left( {x - 2} \right)}^2}}} = \frac{{{x^2} - 4x + 3}}{{{{\left( {x - 2} \right)}^2}}}\).

+) Xét đáp án B: Có \(y' = \frac{{\left( {2x - 4} \right)\left( {x - 2} \right) - \left( {{x^2} - 4x + 2} \right)}}{{{{\left( {x - 2} \right)}^2}}} = \frac{{{x^2} - 4x + 6}}{{{{\left( {x - 2} \right)}^2}}} = \frac{{{{\left( {x - 2} \right)}^2} + 2}}{{{{\left( {x - 2} \right)}^2}}} > 0,\forall x \ne 2\).

+) Xét đáp án C: Có \(y' = \frac{{\left( {2x - 1} \right)\left( {x - 2} \right) - \left( {{x^2} - x} \right)}}{{{{\left( {x - 2} \right)}^2}}} = \)\( = \frac{{{x^2} - 4x + 2}}{{{{\left( {x - 2} \right)}^2}}}\).

+) Xét đáp án D: Có \(y' = \frac{{\left( {2x - 4} \right)\left( {x - 2} \right) - \left( {{x^2} - 4x + 5} \right)}}{{{{\left( {x - 2} \right)}^2}}} = \frac{{{x^2} - 4x + 3}}{{{{\left( {x - 2} \right)}^2}}}\). Chọn B.

Lời giải

Từ đồ thị hàm số đã cho ta có

Đồ thị hàm số có 1 đường tiệm cận đứng \(x = {x_0} < 0\).

Suy ra \( - d < 0 \Rightarrow d > 0\).

Đồ thị hàm số cắt trục tung tại điểm có tung độ âm. Nên \(\frac{c}{d} < 0 \Rightarrow c < 0\).

Dựa vào hình dạng đồ thị dễ thấy hàm số đã cho có 2 cực trị và \(a < 0\).

Đồ thị hàm số có đường thẳng đi qua 2 điểm cực trị có dạng \(y = \frac{{2ax + b}}{d}\).

Mà đường thắng cắt trục tung tại điểm có tung độ âm nên \(\frac{b}{d} < 0 \Rightarrow b < 0\).

Vậy có 1 số dương trong các số \(a;b;c;d\).

Trả lời: 1.

Câu 3

A. \[ - 9{\rm{m/}}{{\rm{s}}^{\rm{2}}}\].                            
B. \[9{\rm{m/}}{{\rm{s}}^{\rm{2}}}\].                                    
C. \[ - 12{\rm{m/}}{{\rm{s}}^{\rm{2}}}\].                                     
D. \[12{\rm{m/}}{{\rm{s}}^{\rm{2}}}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(1418000\) đồng.                                                             
B. \(1403000\) đồng.        
C. \(1402000\) đồng.                                                             
D. \(1417000\) đồng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP