Câu hỏi:

10/09/2025 75 Lưu

Đường cong trong hình là đồ thị của hàm số nào dưới đây?

Đường cong trong hình là đồ thị của hàm số nào dưới đây?    (ảnh 1)

A. \(y = \frac{{ - {x^2} + 1}}{x}\).                                       
B. \(y = \frac{{ - 2x + 1}}{{2x + 2}}\).                                               
C. \(y = \frac{{{x^2} - x + 1}}{{x - 1}}\).                                          
D. \(y = {x^3} - 3{x^2}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Dựa vào đồ thị hàm số, ta thấy \(x = 0\) là tiệm cận đứng của đồ thị hàm số ; \(y = x\) là tiệm cận xiên. Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(y = \frac{{{x^2} - 3}}{{x - 2}}\).                                                
B. \(y = \frac{{{x^2} - 4x + 2}}{{x - 2}}\).
C.\(y = \frac{{{x^2} - x}}{{x - 2}}\).                                                
D. \(y = \frac{{{x^2} - 4x + 5}}{{x - 2}}\).

Lời giải

Dựa vào bảng biến thiên ta thấy

Tiệm cận đứng là đường thẳng \(x = 2\).

Đạo hàm \(y' > 0\) với mọi \(x \ne 2\)

+) Xét đáp án A: Có \(y' = \frac{{2x\left( {x - 2} \right) - \left( {{x^2} - 3} \right)}}{{{{\left( {x - 2} \right)}^2}}} = \frac{{{x^2} - 4x + 3}}{{{{\left( {x - 2} \right)}^2}}}\).

+) Xét đáp án B: Có \(y' = \frac{{\left( {2x - 4} \right)\left( {x - 2} \right) - \left( {{x^2} - 4x + 2} \right)}}{{{{\left( {x - 2} \right)}^2}}} = \frac{{{x^2} - 4x + 6}}{{{{\left( {x - 2} \right)}^2}}} = \frac{{{{\left( {x - 2} \right)}^2} + 2}}{{{{\left( {x - 2} \right)}^2}}} > 0,\forall x \ne 2\).

+) Xét đáp án C: Có \(y' = \frac{{\left( {2x - 1} \right)\left( {x - 2} \right) - \left( {{x^2} - x} \right)}}{{{{\left( {x - 2} \right)}^2}}} = \)\( = \frac{{{x^2} - 4x + 2}}{{{{\left( {x - 2} \right)}^2}}}\).

+) Xét đáp án D: Có \(y' = \frac{{\left( {2x - 4} \right)\left( {x - 2} \right) - \left( {{x^2} - 4x + 5} \right)}}{{{{\left( {x - 2} \right)}^2}}} = \frac{{{x^2} - 4x + 3}}{{{{\left( {x - 2} \right)}^2}}}\). Chọn B.

Câu 2

A. \[ - 9{\rm{m/}}{{\rm{s}}^{\rm{2}}}\].                            
B. \[9{\rm{m/}}{{\rm{s}}^{\rm{2}}}\].                                    
C. \[ - 12{\rm{m/}}{{\rm{s}}^{\rm{2}}}\].                                     
D. \[12{\rm{m/}}{{\rm{s}}^{\rm{2}}}\].

Lời giải

Ta có: \(S = {t^3} - 3{t^2} - 9t + 2\)

Khi vận tốc bị triệt tiêu tức \(v = 0 \Leftrightarrow 3{t^2} - 6t - 9 = 0 \Leftrightarrow \left[ \begin{array}{l}t = - 1 < 0\\t = 3\left( {tm} \right)\end{array} \right.\).

Khi đó gia tốc tại thời điểm vận tốc bị triệt tiêu là \(a = 6.3 - 6 = 12\left( {{\rm{m/}}{{\rm{s}}^{\rm{2}}}} \right)\). Chọn D.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(1418000\) đồng.                                                             
B. \(1403000\) đồng.        
C. \(1402000\) đồng.                                                             
D. \(1417000\) đồng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[y = {\rm{ }}{x^4} - 2{x^2}\].                                        
B. \[y = {x^{\rm{3}}} - 3x - 1\].         
C. \[y = - {x^{\rm{3}}} + 3x\].                                        
D. \[y = {x^3} - 3x\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP