Phần II. Câu trắc nghiệm đúng sai. Trong mỗi ý a), b), c), d) ở mỗi câu, chọn đúng hoặc sai.
Cho hàm số \(y = \frac{{ - {x^2} + x + 1}}{{x + 1}}\) có đồ thị (C).
a) Hàm số đồng biến trên khoảng \(( - 2, - 1)\) và \(( - 1,0)\).
b) Hàm số có hai điểm cực trị.
c) Đồ thị \((C)\) không cắt trục \(Ox\).
d) Đồ thị \((C)\) có tiệm cận xiên đi qua điểm \(A(1;2)\)
Phần II. Câu trắc nghiệm đúng sai. Trong mỗi ý a), b), c), d) ở mỗi câu, chọn đúng hoặc sai.
Cho hàm số \(y = \frac{{ - {x^2} + x + 1}}{{x + 1}}\) có đồ thị (C).
a) Hàm số đồng biến trên khoảng \(( - 2, - 1)\) và \(( - 1,0)\).
b) Hàm số có hai điểm cực trị.
c) Đồ thị \((C)\) không cắt trục \(Ox\).
d) Đồ thị \((C)\) có tiệm cận xiên đi qua điểm \(A(1;2)\)
Quảng cáo
Trả lời:

a) Ta có \(y = \frac{{ - {x^2} + x + 1}}{{x + 1}} = - x + 2 - \frac{1}{{x + 1}}\).
Ta có \(y' = \frac{{ - {x^2} - 2x}}{{{{(x + 1)}^2}}}\) ; \(y' = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0}\\{x = - 2}\end{array}} \right.\).
Khi đó ta có bảng biến thiên:

Dựa vào bảng biến thiên ta có hàm số đồng biến trên các khoảng (−2; −1) và (−1; 0).
b) Dựa vào bảng biến thiên ta có hàm số có hai điểm cực trị.
c) \(y = 0 \Leftrightarrow - {x^2} + x + 1 = 0\;(*)\).
Phương trình \((*)\) luôn có hai nghiệm phân biệt. Hay \((C)\) luôn cắt \(Ox\) tại hai điểm phân biệt.
d) \(\mathop {\lim }\limits_{x \to \pm \infty } \left[ {y - \left( { - x + 2} \right)} \right] = \mathop {\lim }\limits_{x \to \pm \infty } \left( { - \frac{1}{{x + 1}}} \right) = 0\).
Suy ra \(y = - x + 2\) là tiệm cận xiên của đồ thị hàm số.
Tiệm cận xiên của đồ thị là \(y = - x + 2\) không đi qua \(A(1;2)\).
Đáp án: a) Đúng; b) Đúng; c) Sai; d) Sai.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Dựa vào bảng biến thiên ta thấy
Tiệm cận đứng là đường thẳng \(x = 2\).
Đạo hàm \(y' > 0\) với mọi \(x \ne 2\)
+) Xét đáp án A: Có \(y' = \frac{{2x\left( {x - 2} \right) - \left( {{x^2} - 3} \right)}}{{{{\left( {x - 2} \right)}^2}}} = \frac{{{x^2} - 4x + 3}}{{{{\left( {x - 2} \right)}^2}}}\).
+) Xét đáp án B: Có \(y' = \frac{{\left( {2x - 4} \right)\left( {x - 2} \right) - \left( {{x^2} - 4x + 2} \right)}}{{{{\left( {x - 2} \right)}^2}}} = \frac{{{x^2} - 4x + 6}}{{{{\left( {x - 2} \right)}^2}}} = \frac{{{{\left( {x - 2} \right)}^2} + 2}}{{{{\left( {x - 2} \right)}^2}}} > 0,\forall x \ne 2\).
+) Xét đáp án C: Có \(y' = \frac{{\left( {2x - 1} \right)\left( {x - 2} \right) - \left( {{x^2} - x} \right)}}{{{{\left( {x - 2} \right)}^2}}} = \)\( = \frac{{{x^2} - 4x + 2}}{{{{\left( {x - 2} \right)}^2}}}\).
+) Xét đáp án D: Có \(y' = \frac{{\left( {2x - 4} \right)\left( {x - 2} \right) - \left( {{x^2} - 4x + 5} \right)}}{{{{\left( {x - 2} \right)}^2}}} = \frac{{{x^2} - 4x + 3}}{{{{\left( {x - 2} \right)}^2}}}\). Chọn B.
Lời giải
Từ đồ thị hàm số đã cho ta có
Đồ thị hàm số có 1 đường tiệm cận đứng \(x = {x_0} < 0\).
Suy ra \( - d < 0 \Rightarrow d > 0\).
Đồ thị hàm số cắt trục tung tại điểm có tung độ âm. Nên \(\frac{c}{d} < 0 \Rightarrow c < 0\).
Dựa vào hình dạng đồ thị dễ thấy hàm số đã cho có 2 cực trị và \(a < 0\).
Đồ thị hàm số có đường thẳng đi qua 2 điểm cực trị có dạng \(y = \frac{{2ax + b}}{d}\).
Mà đường thắng cắt trục tung tại điểm có tung độ âm nên \(\frac{b}{d} < 0 \Rightarrow b < 0\).
Vậy có 1 số dương trong các số \(a;b;c;d\).
Trả lời: 1.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.