Cho hàm số \(y = x + \frac{4}{x}\).
a) Đạo hàm của hàm số đã cho là \(y' = 1 + \frac{4}{{{x^2}}}\).
b) Đạo hàm của hàm số đã cho nhận giá trị âm trên các khoảng \(\left( { - 2;\,0} \right) \cup \left( {0;\,2} \right)\) và nhận giá trị dương trên các khoảng \(\left( { - \infty ;\, - 2} \right) \cup \left( {2;\, + \infty } \right)\).
c) Bảng biến thiên của hàm số đã cho là:

d) Đồ thị hàm số đã cho như hình
Cho hàm số \(y = x + \frac{4}{x}\).
a) Đạo hàm của hàm số đã cho là \(y' = 1 + \frac{4}{{{x^2}}}\).
b) Đạo hàm của hàm số đã cho nhận giá trị âm trên các khoảng \(\left( { - 2;\,0} \right) \cup \left( {0;\,2} \right)\) và nhận giá trị dương trên các khoảng \(\left( { - \infty ;\, - 2} \right) \cup \left( {2;\, + \infty } \right)\).
c) Bảng biến thiên của hàm số đã cho là:

d) Đồ thị hàm số đã cho như hình

Quảng cáo
Trả lời:
a) Đạo hàm của hàm số đã cho là \(y' = 1 - \frac{4}{{{x^2}}}\).
b) \(y' = 1 - \frac{4}{{{x^2}}} > 0 \Leftrightarrow \left[ \begin{array}{l}x > 2\\x < - 2\end{array} \right.,x \ne 0\) nên đạo hàm của hàm số đã cho nhận giá trị âm trên các khoảng \(\left( { - 2;\,0} \right) \cup \left( {0;\,2} \right)\) và nhận giá trị dương trên các khoảng \(\left( { - \infty ;\, - 2} \right) \cup \left( {2;\, + \infty } \right)\).
c) Bảng biến thiên của hàm số đã cho là:

d) Đồ thị hàm số đã cho như ở hình
.
Đáp án: a) Sai; b) Đúng; c) Sai; d) Đúng.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Dựa vào bảng biến thiên ta thấy
Tiệm cận đứng là đường thẳng \(x = 2\).
Đạo hàm \(y' > 0\) với mọi \(x \ne 2\)
+) Xét đáp án A: Có \(y' = \frac{{2x\left( {x - 2} \right) - \left( {{x^2} - 3} \right)}}{{{{\left( {x - 2} \right)}^2}}} = \frac{{{x^2} - 4x + 3}}{{{{\left( {x - 2} \right)}^2}}}\).
+) Xét đáp án B: Có \(y' = \frac{{\left( {2x - 4} \right)\left( {x - 2} \right) - \left( {{x^2} - 4x + 2} \right)}}{{{{\left( {x - 2} \right)}^2}}} = \frac{{{x^2} - 4x + 6}}{{{{\left( {x - 2} \right)}^2}}} = \frac{{{{\left( {x - 2} \right)}^2} + 2}}{{{{\left( {x - 2} \right)}^2}}} > 0,\forall x \ne 2\).
+) Xét đáp án C: Có \(y' = \frac{{\left( {2x - 1} \right)\left( {x - 2} \right) - \left( {{x^2} - x} \right)}}{{{{\left( {x - 2} \right)}^2}}} = \)\( = \frac{{{x^2} - 4x + 2}}{{{{\left( {x - 2} \right)}^2}}}\).
+) Xét đáp án D: Có \(y' = \frac{{\left( {2x - 4} \right)\left( {x - 2} \right) - \left( {{x^2} - 4x + 5} \right)}}{{{{\left( {x - 2} \right)}^2}}} = \frac{{{x^2} - 4x + 3}}{{{{\left( {x - 2} \right)}^2}}}\). Chọn B.
Câu 2
Lời giải
Ta có: \(S = {t^3} - 3{t^2} - 9t + 2\)
Khi vận tốc bị triệt tiêu tức \(v = 0 \Leftrightarrow 3{t^2} - 6t - 9 = 0 \Leftrightarrow \left[ \begin{array}{l}t = - 1 < 0\\t = 3\left( {tm} \right)\end{array} \right.\).
Khi đó gia tốc tại thời điểm vận tốc bị triệt tiêu là \(a = 6.3 - 6 = 12\left( {{\rm{m/}}{{\rm{s}}^{\rm{2}}}} \right)\). Chọn D.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



