Câu hỏi:

10/09/2025 25 Lưu

Cho hàm số \(y = x + \frac{4}{x}\).

a) Đạo hàm của hàm số đã cho là \(y' = 1 + \frac{4}{{{x^2}}}\).

b) Đạo hàm của hàm số đã cho nhận giá trị âm trên các khoảng \(\left( { - 2;\,0} \right) \cup \left( {0;\,2} \right)\) và nhận giá trị dương trên các khoảng \(\left( { - \infty ;\, - 2} \right) \cup \left( {2;\, + \infty } \right)\).

c) Bảng biến thiên của hàm số đã cho là:

Bảng biến thiên của hàm số đã cho là: (ảnh 1)

d) Đồ thị hàm số đã cho như hình

Bảng biến thiên của hàm số đã cho là: (ảnh 2)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đạo hàm của hàm số đã cho là \(y' = 1 - \frac{4}{{{x^2}}}\).

b) \(y' = 1 - \frac{4}{{{x^2}}} > 0 \Leftrightarrow \left[ \begin{array}{l}x > 2\\x < - 2\end{array} \right.,x \ne 0\) nên đạo hàm của hàm số đã cho nhận giá trị âm trên các khoảng \(\left( { - 2;\,0} \right) \cup \left( {0;\,2} \right)\) và nhận giá trị dương trên các khoảng \(\left( { - \infty ;\, - 2} \right) \cup \left( {2;\, + \infty } \right)\).

c) Bảng biến thiên của hàm số đã cho là:

Bảng biến thiên của hàm số đã cho là: (ảnh 3)

d) Đồ thị hàm số đã cho như ở hình

Bảng biến thiên của hàm số đã cho là: (ảnh 4).

Đáp án: a) Sai;   b) Đúng;   c) Sai; d) Đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(y = \frac{{{x^2} - 3}}{{x - 2}}\).                                                
B. \(y = \frac{{{x^2} - 4x + 2}}{{x - 2}}\).
C.\(y = \frac{{{x^2} - x}}{{x - 2}}\).                                                
D. \(y = \frac{{{x^2} - 4x + 5}}{{x - 2}}\).

Lời giải

Dựa vào bảng biến thiên ta thấy

Tiệm cận đứng là đường thẳng \(x = 2\).

Đạo hàm \(y' > 0\) với mọi \(x \ne 2\)

+) Xét đáp án A: Có \(y' = \frac{{2x\left( {x - 2} \right) - \left( {{x^2} - 3} \right)}}{{{{\left( {x - 2} \right)}^2}}} = \frac{{{x^2} - 4x + 3}}{{{{\left( {x - 2} \right)}^2}}}\).

+) Xét đáp án B: Có \(y' = \frac{{\left( {2x - 4} \right)\left( {x - 2} \right) - \left( {{x^2} - 4x + 2} \right)}}{{{{\left( {x - 2} \right)}^2}}} = \frac{{{x^2} - 4x + 6}}{{{{\left( {x - 2} \right)}^2}}} = \frac{{{{\left( {x - 2} \right)}^2} + 2}}{{{{\left( {x - 2} \right)}^2}}} > 0,\forall x \ne 2\).

+) Xét đáp án C: Có \(y' = \frac{{\left( {2x - 1} \right)\left( {x - 2} \right) - \left( {{x^2} - x} \right)}}{{{{\left( {x - 2} \right)}^2}}} = \)\( = \frac{{{x^2} - 4x + 2}}{{{{\left( {x - 2} \right)}^2}}}\).

+) Xét đáp án D: Có \(y' = \frac{{\left( {2x - 4} \right)\left( {x - 2} \right) - \left( {{x^2} - 4x + 5} \right)}}{{{{\left( {x - 2} \right)}^2}}} = \frac{{{x^2} - 4x + 3}}{{{{\left( {x - 2} \right)}^2}}}\). Chọn B.

Lời giải

Từ đồ thị hàm số đã cho ta có

Đồ thị hàm số có 1 đường tiệm cận đứng \(x = {x_0} < 0\).

Suy ra \( - d < 0 \Rightarrow d > 0\).

Đồ thị hàm số cắt trục tung tại điểm có tung độ âm. Nên \(\frac{c}{d} < 0 \Rightarrow c < 0\).

Dựa vào hình dạng đồ thị dễ thấy hàm số đã cho có 2 cực trị và \(a < 0\).

Đồ thị hàm số có đường thẳng đi qua 2 điểm cực trị có dạng \(y = \frac{{2ax + b}}{d}\).

Mà đường thắng cắt trục tung tại điểm có tung độ âm nên \(\frac{b}{d} < 0 \Rightarrow b < 0\).

Vậy có 1 số dương trong các số \(a;b;c;d\).

Trả lời: 1.

Câu 3

A. \[ - 9{\rm{m/}}{{\rm{s}}^{\rm{2}}}\].                            
B. \[9{\rm{m/}}{{\rm{s}}^{\rm{2}}}\].                                    
C. \[ - 12{\rm{m/}}{{\rm{s}}^{\rm{2}}}\].                                     
D. \[12{\rm{m/}}{{\rm{s}}^{\rm{2}}}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(1418000\) đồng.                                                             
B. \(1403000\) đồng.        
C. \(1402000\) đồng.                                                             
D. \(1417000\) đồng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP